Africa Eastern and Southern | Mortality rate, infant, male (per 1,000 live births)

Infant mortality rate, male is the number of male infants dying before reaching one year of age, per 1,000 male live births in a given year. Development relevance: Mortality rates for different age groups (infants, children, and adults) and overall mortality indicators (life expectancy at birth or survival to a given age) are important indicators of health status in a country. Because data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. And they are among the indicators most frequently used to compare socioeconomic development across countries. Limitations and exceptions: Complete vital registration systems are fairly uncommon in developing countries. Thus estimates must be obtained from sample surveys or derived by applying indirect estimation techniques to registration, census, or survey data. Survey data are subject to recall error, and surveys estimating infant/child deaths require large samples because households in which a birth has occurred during a given year cannot ordinarily be preselected for sampling. Indirect estimates rely on model life tables that may be inappropriate for the population concerned. Extrapolations based on outdated surveys may not be reliable for monitoring changes in health status or for comparative analytical work. Statistical concept and methodology: The main sources of mortality data are vital registration systems and direct or indirect estimates based on sample surveys or censuses. A "complete" vital registration system - covering at least 90 percent of vital events in the population - is the best source of age-specific mortality data. Estimates of neonatal, infant, and child mortality tend to vary by source and method for a given time and place. Years for available estimates also vary by country, making comparisons across countries and over time difficult. To make neonatal, infant, and child mortality estimates comparable and to ensure consistency across estimates by different agencies, the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME), which comprises the United Nations Children's Fund (UNICEF), the World Health Organization (WHO), the World Bank, the United Nations Population Division, and other universities and research institutes, developed and adopted a statistical method that uses all available information to reconcile differences. The method uses statistical models to obtain a best estimate trend line by fitting a country-specific regression model of mortality rates against their reference dates.
Publisher
The World Bank
Origin
Africa Eastern and Southern
Records
63
Source
Africa Eastern and Southern | Mortality rate, infant, male (per 1,000 live births)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990 109.76589045
1991 108.66017325
1992 107.61265473
1993 106.6072277
1994 106.79863546
1995 103.85806425
1996 102.29395289
1997 100.58295509
1998 98.20655694
1999 95.63681392
2000 92.86636469
2001 89.71976635
2002 86.52039165
2003 83.21901339
2004 79.93554772
2005 76.81933215
2006 73.95476971
2007 71.13175055
2008 68.37742894
2009 65.9224232
2010 63.63610661
2011 61.43369844
2012 59.39831037
2013 57.53541029
2014 55.8547752
2015 54.25833606
2016 52.77161978
2017 51.2585264
2018 49.79666479
2019 48.49219443
2020 47.35647745
2021 46.21310202
2022

Africa Eastern and Southern | Mortality rate, infant, male (per 1,000 live births)

Infant mortality rate, male is the number of male infants dying before reaching one year of age, per 1,000 male live births in a given year. Development relevance: Mortality rates for different age groups (infants, children, and adults) and overall mortality indicators (life expectancy at birth or survival to a given age) are important indicators of health status in a country. Because data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. And they are among the indicators most frequently used to compare socioeconomic development across countries. Limitations and exceptions: Complete vital registration systems are fairly uncommon in developing countries. Thus estimates must be obtained from sample surveys or derived by applying indirect estimation techniques to registration, census, or survey data. Survey data are subject to recall error, and surveys estimating infant/child deaths require large samples because households in which a birth has occurred during a given year cannot ordinarily be preselected for sampling. Indirect estimates rely on model life tables that may be inappropriate for the population concerned. Extrapolations based on outdated surveys may not be reliable for monitoring changes in health status or for comparative analytical work. Statistical concept and methodology: The main sources of mortality data are vital registration systems and direct or indirect estimates based on sample surveys or censuses. A "complete" vital registration system - covering at least 90 percent of vital events in the population - is the best source of age-specific mortality data. Estimates of neonatal, infant, and child mortality tend to vary by source and method for a given time and place. Years for available estimates also vary by country, making comparisons across countries and over time difficult. To make neonatal, infant, and child mortality estimates comparable and to ensure consistency across estimates by different agencies, the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME), which comprises the United Nations Children's Fund (UNICEF), the World Health Organization (WHO), the World Bank, the United Nations Population Division, and other universities and research institutes, developed and adopted a statistical method that uses all available information to reconcile differences. The method uses statistical models to obtain a best estimate trend line by fitting a country-specific regression model of mortality rates against their reference dates.
Publisher
The World Bank
Origin
Africa Eastern and Southern
Records
63
Source