Africa Western and Central | Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal)
Water productivity is calculated as GDP in constant prices divided by annual total water withdrawal. Development relevance: While some countries have an abundant supply of fresh water, others do not have as much. UN estimates that many areas of the world are already experiencing stress on water availability. Due to the accelerated pace of population growth and an increase in the amount of water a single person uses, it is expected that this situation will continue to get worse. The ability of developing countries to make more water available for domestic, agricultural, industrial and environmental uses will depend on better management of water resources and more cross-sectoral planning and integration. According to World Water Council, by 2020, water use is expected to increase by 40 percent, and 17 percent more water will be required for food production to meet the needs of the growing population. The three major factors causing increasing water demand over the past century are population growth, industrial development and the expansion of irrigated agriculture. There is now ample evidence that increased hydrologic variability and change in climate has and will continue to have a profound impact on the water sector through the hydrologic cycle, water availability, water demand, and water allocation at the global, regional, basin, and local levels. Properly managed water resources are a critical component of growth, poverty reduction and equity. The livelihoods of the poorest are critically associated with access to water services. A shortage of water in the future would be detrimental to the human population as it would affect everything from sanitation, to overall health and the production of grain. Limitations and exceptions: A common perception is that most of the available freshwater resources are visible (on the surfaces of lakes, reservoirs and rivers). However, this visible water represents only a tiny fraction of global freshwater resources, as most of it is stored in aquifers, with the largest stocks stored in solid form in the Antarctic and in Greenland's ice cap. The data on freshwater resources are based on estimates of runoff into rivers and recharge of groundwater. These estimates are based on different sources and refer to different years, so cross-country comparisons should be made with caution. Because the data are collected intermittently, they may hide significant variations in total renewable water resources from year to year. The data also fail to distinguish between seasonal and geographic variations in water availability within countries. Data for small countries and countries in arid and semiarid zones are less reliable than those for larger countries and countries with greater rainfall. Caution should also be used in comparing data on annual freshwater withdrawals, which are subject to variations in collection and estimation methods. In addition, inflows and outflows are estimated at different times and at different levels of quality and precision, requiring caution in interpreting the data, particularly for water-short countries, notably in the Middle East and North Africa. The data are based on surveys and estimates provided by governments to the Joint Monitoring Programme of the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF). The coverage rates are based on information from service users on actual household use rather than on information from service providers, which may include nonfunctioning systems. Statistical concept and methodology: Water productivity is an indication only of the efficiency by which each country uses its water resources. Given the different economic structure of each country, these indicators should be used carefully, taking into account a country's sectorial activities and natural resource endowments. GDP data are from World Bank's national accounts files. Water withdrawals can exceed 100 percent of total renewable resources where extraction from nonrenewable aquifers or desalination plants is considerable or where water reuse is significant. Withdrawals for agriculture and industry are total withdrawals for irrigation and livestock production and for direct industrial use (including for cooling thermoelectric plants).
Publisher
The World Bank
Origin
Africa Western and Central
Records
63
Source
Africa Western and Central | Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
34.25530965 1970
33.50330339 1971
30.52002625 1972
29.46168454 1973
29.64991228 1974
24.53707889 1975
22.43779106 1976
21.81181045 1977
22.54431575 1978
20.98721223 1979
10.35704014 1980
8.72225317 1981
7.40919867 1982
6.44505168 1983
6.1575977 1984
7.29095658 1985
7.54164956 1986
16.16269319 1987
15.70927722 1988
15.20191441 1989
15.38193727 1990
14.90416927 1991
14.64493843 1992
13.77304896 1993
13.1037456 1994
12.77714449 1995
12.81466464 1996
12.85276097 1997
12.76564781 1998
12.48275721 1999
12.52296649 2000
12.73717587 2001
13.62686212 2002
14.16662638 2003
15.07456257 2004
15.68423129 2005
16.3645214 2006
17.11296238 2007
18.02436606 2008
18.98658 2009
20.13068593 2010
21.04548896 2011
22.06056813 2012
23.34660219 2013
24.66471131 2014
25.08668777 2015
25.05926231 2016
25.73817203 2017
25.29103726 2018
25.94865375 2019
25.70521341 2020
2021
2022
Africa Western and Central | Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal)
Water productivity is calculated as GDP in constant prices divided by annual total water withdrawal. Development relevance: While some countries have an abundant supply of fresh water, others do not have as much. UN estimates that many areas of the world are already experiencing stress on water availability. Due to the accelerated pace of population growth and an increase in the amount of water a single person uses, it is expected that this situation will continue to get worse. The ability of developing countries to make more water available for domestic, agricultural, industrial and environmental uses will depend on better management of water resources and more cross-sectoral planning and integration. According to World Water Council, by 2020, water use is expected to increase by 40 percent, and 17 percent more water will be required for food production to meet the needs of the growing population. The three major factors causing increasing water demand over the past century are population growth, industrial development and the expansion of irrigated agriculture. There is now ample evidence that increased hydrologic variability and change in climate has and will continue to have a profound impact on the water sector through the hydrologic cycle, water availability, water demand, and water allocation at the global, regional, basin, and local levels. Properly managed water resources are a critical component of growth, poverty reduction and equity. The livelihoods of the poorest are critically associated with access to water services. A shortage of water in the future would be detrimental to the human population as it would affect everything from sanitation, to overall health and the production of grain. Limitations and exceptions: A common perception is that most of the available freshwater resources are visible (on the surfaces of lakes, reservoirs and rivers). However, this visible water represents only a tiny fraction of global freshwater resources, as most of it is stored in aquifers, with the largest stocks stored in solid form in the Antarctic and in Greenland's ice cap. The data on freshwater resources are based on estimates of runoff into rivers and recharge of groundwater. These estimates are based on different sources and refer to different years, so cross-country comparisons should be made with caution. Because the data are collected intermittently, they may hide significant variations in total renewable water resources from year to year. The data also fail to distinguish between seasonal and geographic variations in water availability within countries. Data for small countries and countries in arid and semiarid zones are less reliable than those for larger countries and countries with greater rainfall. Caution should also be used in comparing data on annual freshwater withdrawals, which are subject to variations in collection and estimation methods. In addition, inflows and outflows are estimated at different times and at different levels of quality and precision, requiring caution in interpreting the data, particularly for water-short countries, notably in the Middle East and North Africa. The data are based on surveys and estimates provided by governments to the Joint Monitoring Programme of the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF). The coverage rates are based on information from service users on actual household use rather than on information from service providers, which may include nonfunctioning systems. Statistical concept and methodology: Water productivity is an indication only of the efficiency by which each country uses its water resources. Given the different economic structure of each country, these indicators should be used carefully, taking into account a country's sectorial activities and natural resource endowments. GDP data are from World Bank's national accounts files. Water withdrawals can exceed 100 percent of total renewable resources where extraction from nonrenewable aquifers or desalination plants is considerable or where water reuse is significant. Withdrawals for agriculture and industry are total withdrawals for irrigation and livestock production and for direct industrial use (including for cooling thermoelectric plants).
Publisher
The World Bank
Origin
Africa Western and Central
Records
63
Source