Andorra | Renewable internal freshwater resources per capita (cubic meters)

Renewable internal freshwater resources flows refer to internal renewable resources (internal river flows and groundwater from rainfall) in the country. Renewable internal freshwater resources per capita are calculated using the World Bank's population estimates. Development relevance: UNESCO estimates that in developing countries in Asia, Africa and Latin America, public water withdrawal represents just 50-100 liters (13 to 26 gallons) per person per day. In regions with insufficient water resources, this figure may be as low as 20-60 (5 to 15 gallons) liters per day. People in developed countries on average consume about 10 times more water daily than those in developing countries. While some countries have an abundant supply of fresh water, others do not have as much. UN estimates that many areas of the world are already experiencing stress on water availability. Due to the accelerated pace of population growth and an increase in the amount of water a single person uses, it is expected that this situation will continue to get worse. The ability of developing countries to make more water available for domestic, agricultural, industrial and environmental uses will depend on better management of water resources and more cross-sectorial planning and integration. According to World Water Council, by 2020, water use is expected to increase by 40 percent, and 17 percent more water will be required for food production to meet the needs of the growing population. The three major factors causing increasing water demand over the past century are population growth, industrial development and the expansion of irrigated agriculture. Water productivity is an indication only of the efficiency by which each country uses its water resources. Given the different economic structure of each country, these indicators should be used carefully, taking into account a country's sectorial activities and natural resource endowments. According to Commission on Sustainable Development (CSD) agriculture accounts for more than 70 percent of freshwater drawn from lakes, rivers and underground sources. Most is used for irrigation which provides about 40 percent of the world food production. Poor management has resulted in the salinization of about 20 percent of the world's irrigated land, with an additional 1.5 million ha affected annually. There is now ample evidence that increased hydrologic variability and change in climate has and will continue to have a profound impact on the water sector through the hydrologic cycle, water availability, water demand, and water allocation at the global, regional, basin, and local levels. Properly managed water resources are a critical component of growth, poverty reduction and equity. The livelihoods of the poorest are critically associated with access to water services. A shortage of water in the future would be detrimental to the human population as it would affect everything from sanitation, to overall health and the production of grain. Freshwater use by continents is partly based on several socio-economic development factors, including population, physiography, and climatic characteristics. It is estimated that in the coming decades the most intensive growth of water withdrawal is expected to occur in Africa and South America (increasing by 1.5-1.6 times), while the smallest growth will take place in Europe and North America (1.2 times). The Commission for Sustainable Development (CSD) has reported that many countries lack adequate legislation and policies for efficient and equitable allocation and use of water resources. Progress is, however, being made with the review of national legislation and enactment of new laws and regulations. Limitations and exceptions: A common perception is that most of the available freshwater resources are visible (on the surfaces of lakes, reservoirs and rivers). However, this visible water represents only a tiny fraction of global freshwater resources, as most of it is stored in aquifers, with the largest stocks stored in solid form in the Antarctic and in Greenland's ice cap. The data on freshwater resources are based on estimates of runoff into rivers and recharge of groundwater. These estimates are based on different sources and refer to different years, so cross-country comparisons should be made with caution. Because the data are collected intermittently, they may hide significant variations in total renewable water resources from year to year. The data also fail to distinguish between seasonal and geographic variations in water availability within countries. Data for small countries and countries in arid and semiarid zones are less reliable than those for larger countries and countries with greater rainfall. Caution should also be used in comparing data on annual freshwater withdrawals, which are subject to variations in collection and estimation methods. In addition, inflows and outflows are estimated at different times and at different levels of quality and precision, requiring caution in interpreting the data, particularly for water-short countries, notably in the Middle East and North Africa. The data are based on surveys and estimates provided by governments to the Joint Monitoring Programme of the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF). The coverage rates are based on information from service users on actual household use rather than on information from service providers, which may include nonfunctioning systems. Statistical concept and methodology: Renewable water resources (internal and external) include average annual flow of rivers and recharge of aquifers generated from endogenous precipitation, and those water resources that are not generated in the country, such as inflows from upstream countries (groundwater and surface water), and part of the water of border lakes and/or rivers. Non-renewable water includes groundwater bodies (deep aquifers) that have a negligible rate of recharge on the human time-scale. While renewable water resources are expressed in flows, non-renewable water resources have to be expressed in quantity (stock). Runoff from glaciers where the mass balance is negative is considered non-renewable. Renewable internal freshwater resources per capita are calculated using the World Bank's population estimates. The unit of calculation is m3/year per inhabitant. Internal renewable freshwater resources per capita are calculated using the World Bank's population estimates. Total actual renewable water resources correspond to the maximum theoretical yearly amount of water actually available for a country at a given moment. The unit of calculation is km3/year or 109 m3/year. Calculation Criteria is [Water resources: total renewable (actual)] = [Surface water: total renewable (actual)] + [Groundwater: total renewable (actual)] - [Overlap between surface water and groundwater].* Fresh water is naturally occurring water on the Earth's surface. It is a renewable but limited natural resource. Fresh water can only be renewed through the process of the water cycle, where water from seas, lakes, forests, land, rivers, and dams evaporates, forms clouds, and returns as precipitation. However, if more fresh water is consumed through human activities than is restored by nature, the result is that the quantity of fresh water available in lakes, rivers, dams and underground waters can be reduced which can cause serious damage to the surrounding environment. * http://www.fao.org/nr/water/aquastat/data/glossary/search.html?termId=4188&submitBtn=s&cls=yes
Publisher
The World Bank
Origin
Principality of Andorra
Records
63
Source
Andorra | Renewable internal freshwater resources per capita (cubic meters)
1960
1961
1962 28654.43980389
1963 26657.6568967
1964 24869.97635934
1965 23269.18823269
1966 21696.68637426
1967 20044.45855827
1968 18478.83365537
1969 17106.61824489
1970 15891.23867069
1971 14801.6133571
1972 13822.70497547
1973 12938.13799041
1974 12137.06110833
1975 11418.23444284
1976 10773.53724312
1977 10197.42156451
1978 9688.70878615
1979 9243.74670494
1980 8862.43014799
1981 8532.72771514
1982 8176.58946059
1983 7805.69845667
1984 7482.04167753
1985 7203.99917825
1986 6920.29382743
1987 6625.38049753
1988 6355.98340516
1989 6111.65979202
1990 5891.46707984
1991 5693.25684598
1992 5509.48798073
1993 5335.04631821
1994 5170.63420548
1995 5015.25553013
1996 4919.94949101
1997 4879.25543428
1998 4841.53038996
1999 4806.94539639
2000 4774.80067174
2001 4653.49454438
2002 4454.54417141
2003 4270.23150716
2004 4102.27080707
2005 3953.59907799
2006 3934.13196046
2007 4037.45778324
2008 4149.62855828
2009 4273.41168824
2010 4412.81337826
2011 4472.34543058
2012 4444.2566854
2013 4422.2119467
2014 4406.52881138
2015 4398.85150392
2016 4350.70306038
2017 4274.2798326
2018 4207.27073974
2019 4133.9743002
2020 4061.77606178
2021
2022

Andorra | Renewable internal freshwater resources per capita (cubic meters)

Renewable internal freshwater resources flows refer to internal renewable resources (internal river flows and groundwater from rainfall) in the country. Renewable internal freshwater resources per capita are calculated using the World Bank's population estimates. Development relevance: UNESCO estimates that in developing countries in Asia, Africa and Latin America, public water withdrawal represents just 50-100 liters (13 to 26 gallons) per person per day. In regions with insufficient water resources, this figure may be as low as 20-60 (5 to 15 gallons) liters per day. People in developed countries on average consume about 10 times more water daily than those in developing countries. While some countries have an abundant supply of fresh water, others do not have as much. UN estimates that many areas of the world are already experiencing stress on water availability. Due to the accelerated pace of population growth and an increase in the amount of water a single person uses, it is expected that this situation will continue to get worse. The ability of developing countries to make more water available for domestic, agricultural, industrial and environmental uses will depend on better management of water resources and more cross-sectorial planning and integration. According to World Water Council, by 2020, water use is expected to increase by 40 percent, and 17 percent more water will be required for food production to meet the needs of the growing population. The three major factors causing increasing water demand over the past century are population growth, industrial development and the expansion of irrigated agriculture. Water productivity is an indication only of the efficiency by which each country uses its water resources. Given the different economic structure of each country, these indicators should be used carefully, taking into account a country's sectorial activities and natural resource endowments. According to Commission on Sustainable Development (CSD) agriculture accounts for more than 70 percent of freshwater drawn from lakes, rivers and underground sources. Most is used for irrigation which provides about 40 percent of the world food production. Poor management has resulted in the salinization of about 20 percent of the world's irrigated land, with an additional 1.5 million ha affected annually. There is now ample evidence that increased hydrologic variability and change in climate has and will continue to have a profound impact on the water sector through the hydrologic cycle, water availability, water demand, and water allocation at the global, regional, basin, and local levels. Properly managed water resources are a critical component of growth, poverty reduction and equity. The livelihoods of the poorest are critically associated with access to water services. A shortage of water in the future would be detrimental to the human population as it would affect everything from sanitation, to overall health and the production of grain. Freshwater use by continents is partly based on several socio-economic development factors, including population, physiography, and climatic characteristics. It is estimated that in the coming decades the most intensive growth of water withdrawal is expected to occur in Africa and South America (increasing by 1.5-1.6 times), while the smallest growth will take place in Europe and North America (1.2 times). The Commission for Sustainable Development (CSD) has reported that many countries lack adequate legislation and policies for efficient and equitable allocation and use of water resources. Progress is, however, being made with the review of national legislation and enactment of new laws and regulations. Limitations and exceptions: A common perception is that most of the available freshwater resources are visible (on the surfaces of lakes, reservoirs and rivers). However, this visible water represents only a tiny fraction of global freshwater resources, as most of it is stored in aquifers, with the largest stocks stored in solid form in the Antarctic and in Greenland's ice cap. The data on freshwater resources are based on estimates of runoff into rivers and recharge of groundwater. These estimates are based on different sources and refer to different years, so cross-country comparisons should be made with caution. Because the data are collected intermittently, they may hide significant variations in total renewable water resources from year to year. The data also fail to distinguish between seasonal and geographic variations in water availability within countries. Data for small countries and countries in arid and semiarid zones are less reliable than those for larger countries and countries with greater rainfall. Caution should also be used in comparing data on annual freshwater withdrawals, which are subject to variations in collection and estimation methods. In addition, inflows and outflows are estimated at different times and at different levels of quality and precision, requiring caution in interpreting the data, particularly for water-short countries, notably in the Middle East and North Africa. The data are based on surveys and estimates provided by governments to the Joint Monitoring Programme of the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF). The coverage rates are based on information from service users on actual household use rather than on information from service providers, which may include nonfunctioning systems. Statistical concept and methodology: Renewable water resources (internal and external) include average annual flow of rivers and recharge of aquifers generated from endogenous precipitation, and those water resources that are not generated in the country, such as inflows from upstream countries (groundwater and surface water), and part of the water of border lakes and/or rivers. Non-renewable water includes groundwater bodies (deep aquifers) that have a negligible rate of recharge on the human time-scale. While renewable water resources are expressed in flows, non-renewable water resources have to be expressed in quantity (stock). Runoff from glaciers where the mass balance is negative is considered non-renewable. Renewable internal freshwater resources per capita are calculated using the World Bank's population estimates. The unit of calculation is m3/year per inhabitant. Internal renewable freshwater resources per capita are calculated using the World Bank's population estimates. Total actual renewable water resources correspond to the maximum theoretical yearly amount of water actually available for a country at a given moment. The unit of calculation is km3/year or 109 m3/year. Calculation Criteria is [Water resources: total renewable (actual)] = [Surface water: total renewable (actual)] + [Groundwater: total renewable (actual)] - [Overlap between surface water and groundwater].* Fresh water is naturally occurring water on the Earth's surface. It is a renewable but limited natural resource. Fresh water can only be renewed through the process of the water cycle, where water from seas, lakes, forests, land, rivers, and dams evaporates, forms clouds, and returns as precipitation. However, if more fresh water is consumed through human activities than is restored by nature, the result is that the quantity of fresh water available in lakes, rivers, dams and underground waters can be reduced which can cause serious damage to the surrounding environment. * http://www.fao.org/nr/water/aquastat/data/glossary/search.html?termId=4188&submitBtn=s&cls=yes
Publisher
The World Bank
Origin
Principality of Andorra
Records
63
Source