Arab World | Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)
Agricultural nitrous oxide emissions are emissions produced through fertilizer use (synthetic and animal manure), animal waste management, agricultural waste burning (nonenergy, on-site), and savanna burning. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: This series excludes Land-use Change & Forestry (LUCF). The world data includes international bunker fuel-related emissions and emissions from territories not part of the United Nations Framework Convention on Climate Change (UNFCCC). Statistical concept and methodology: Agricultural nitrous oxide emissions are emissions produced through fertilizer use (synthetic and animal manure), animal waste management, agricultural waste burning (nonenergy, on-site), and savannah burning. IPCC category 4 = Agriculture. Expressed in CO2 equivalent using the GWP100 metric of the Second Assessment Report of IPCC and include N2O (GWP100=310).
Publisher
The World Bank
Origin
Arab World
Records
63
Source
Arab World | Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
59806.63011 1990
58799.07953 1991
59774.62202 1992
62960.34094 1993
63619.84435 1994
65112.81584 1995
68210.22251 1996
69103.16879 1997
72463.29808 1998
73387.22616 1999
75808.1439 2000
75162.08428 2001
78129.58974 2002
77178.35715 2003
80500.27879 2004
82258.73369 2005
81009.02063 2006
81699.65987 2007
80421.13057 2008
81750.54265 2009
79701.57664 2010
82051.37824 2011
83442.98 2012
84267.9334 2013
83723.398 2014
84182.7054 2015
84933.3972 2016
85568.1968 2017
84695.8018 2018
84260.6324 2019
84904.6402 2020
2021
2022
Arab World | Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)
Agricultural nitrous oxide emissions are emissions produced through fertilizer use (synthetic and animal manure), animal waste management, agricultural waste burning (nonenergy, on-site), and savanna burning. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: This series excludes Land-use Change & Forestry (LUCF). The world data includes international bunker fuel-related emissions and emissions from territories not part of the United Nations Framework Convention on Climate Change (UNFCCC). Statistical concept and methodology: Agricultural nitrous oxide emissions are emissions produced through fertilizer use (synthetic and animal manure), animal waste management, agricultural waste burning (nonenergy, on-site), and savannah burning. IPCC category 4 = Agriculture. Expressed in CO2 equivalent using the GWP100 metric of the Second Assessment Report of IPCC and include N2O (GWP100=310).
Publisher
The World Bank
Origin
Arab World
Records
63
Source