Arab World | CO2 emissions from gaseous fuel consumption (kt)
Carbon dioxide emissions from liquid fuel consumption refer mainly to emissions from use of natural gas as an energy source. Development relevance: Carbon dioxide (CO2) is naturally occurring gas fixed by photosynthesis into organic matter. A byproduct of fossil fuel combustion and biomass burning, it is also emitted from land use changes and other industrial processes. It is the principal anthropogenic greenhouse gas that affects the Earth's radiative balance. It is the reference gas against which other greenhouse gases are measured, thus having a Global Warming Potential of 1. An emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. Burning of carbon-based fuels since the industrial revolution has rapidly increased concentrations of atmospheric carbon dioxide, increasing the rate of global warming and causing anthropogenic climate change. It is also a major source of ocean acidification since it dissolves in water to form carbonic acid. The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: The U.S. Department of Energy's Carbon Dioxide Information Analysis Center (CDIAC) calculates annual anthropogenic emissions from data on fossil fuel consumption (from the United Nations Statistics Division's World Energy Data Set) and world cement manufacturing (from the U.S. Department of Interior's Geological Survey, USGS 2011). Although estimates of global carbon dioxide emissions are probably accurate within 10 percent (as calculated from global average fuel chemistry and use), country estimates may have larger error bounds. Trends estimated from a consistent time series tend to be more accurate than individual values. Each year the CDIAC recalculates the entire time series since 1949, incorporating recent findings and corrections. Estimates exclude fuels supplied to ships and aircraft in international transport because of the difficulty of apportioning the fuels among benefiting countries. Statistical concept and methodology: Carbon dioxide emissions, largely by-products of energy production and use, account for the largest share of greenhouse gases, which are associated with global warming. Anthropogenic carbon dioxide emissions result primarily from fossil fuel combustion and cement manufacturing. In combustion different fossil fuels release different amounts of carbon dioxide for the same level of energy use: oil releases about 50 percent more carbon dioxide than natural gas, and coal releases about twice as much. Cement manufacturing releases about half a metric ton of carbon dioxide for each metric ton of cement produced. Data for carbon dioxide emissions include gases from the burning of fossil fuels and cement manufacture, but excludes emissions from land use such as deforestation. Carbon dioxide emissions are often calculated and reported as elemental carbon. The values were converted to actual carbon dioxide mass by multiplying them by 3.667 (the ratio of the mass of carbon to that of carbon dioxide).
Publisher
The World Bank
Origin
Arab World
Records
63
Source
Arab World | CO2 emissions from gaseous fuel consumption (kt)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
11588.97278459 1971
17346.04998849 1972
21579.19499135 1973
20957.02112116 1974
26399.07358066 1975
29175.22914068 1976
27312.2325811 1977
53434.24418246 1978
53229.15945933 1979
100294.1686556 1980
107398.61302659 1981
72658.03483337 1982
76101.91037269 1983
129052.46417041 1984
140885.46574257 1985
170529.88204222 1986
186735.44469238 1987
195588.91349457 1988
210424.66497517 1989
242553.31509082 1990
264251.1405714 1991
275882.84498456 1992
307523.09112007 1993
324709.71718219 1994
297650.25194718 1995
318188.38606055 1996
313248.10083621 1997
332170.39831127 1998
334431.79647733 1999
352016.5832422 2000
346651.07784988 2001
387085.65018677 2002
404167.90402584 2003
439812.95101612 2004
497318.1802784 2005
514288.33061864 2006
524350.58604817 2007
572667.19404422 2008
580866.21201043 2009
627755.14718597 2010
672082.40886675 2011
713825.36221948 2012
712110.21588516 2013
741294.74416389 2014
810116.92229938 2015
833572.7073038 2016
2017
2018
2019
2020
2021
2022
Arab World | CO2 emissions from gaseous fuel consumption (kt)
Carbon dioxide emissions from liquid fuel consumption refer mainly to emissions from use of natural gas as an energy source. Development relevance: Carbon dioxide (CO2) is naturally occurring gas fixed by photosynthesis into organic matter. A byproduct of fossil fuel combustion and biomass burning, it is also emitted from land use changes and other industrial processes. It is the principal anthropogenic greenhouse gas that affects the Earth's radiative balance. It is the reference gas against which other greenhouse gases are measured, thus having a Global Warming Potential of 1. An emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. Burning of carbon-based fuels since the industrial revolution has rapidly increased concentrations of atmospheric carbon dioxide, increasing the rate of global warming and causing anthropogenic climate change. It is also a major source of ocean acidification since it dissolves in water to form carbonic acid. The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: The U.S. Department of Energy's Carbon Dioxide Information Analysis Center (CDIAC) calculates annual anthropogenic emissions from data on fossil fuel consumption (from the United Nations Statistics Division's World Energy Data Set) and world cement manufacturing (from the U.S. Department of Interior's Geological Survey, USGS 2011). Although estimates of global carbon dioxide emissions are probably accurate within 10 percent (as calculated from global average fuel chemistry and use), country estimates may have larger error bounds. Trends estimated from a consistent time series tend to be more accurate than individual values. Each year the CDIAC recalculates the entire time series since 1949, incorporating recent findings and corrections. Estimates exclude fuels supplied to ships and aircraft in international transport because of the difficulty of apportioning the fuels among benefiting countries. Statistical concept and methodology: Carbon dioxide emissions, largely by-products of energy production and use, account for the largest share of greenhouse gases, which are associated with global warming. Anthropogenic carbon dioxide emissions result primarily from fossil fuel combustion and cement manufacturing. In combustion different fossil fuels release different amounts of carbon dioxide for the same level of energy use: oil releases about 50 percent more carbon dioxide than natural gas, and coal releases about twice as much. Cement manufacturing releases about half a metric ton of carbon dioxide for each metric ton of cement produced. Data for carbon dioxide emissions include gases from the burning of fossil fuels and cement manufacture, but excludes emissions from land use such as deforestation. Carbon dioxide emissions are often calculated and reported as elemental carbon. The values were converted to actual carbon dioxide mass by multiplying them by 3.667 (the ratio of the mass of carbon to that of carbon dioxide).
Publisher
The World Bank
Origin
Arab World
Records
63
Source