Argentina | Land under cereal production (hectares)
Land under cereal production refers to harvested area, although some countries report only sown or cultivated area. Cereals include wheat, rice, maize, barley, oats, rye, millet, sorghum, buckwheat, and mixed grains. Production data on cereals relate to crops harvested for dry grain only. Cereal crops harvested for hay or harvested green for food, feed, or silage and those used for grazing are excluded. Development relevance: The cultivation of cereals varies widely in different countries and depends partly upon the development of the economy. Production depends on the nature of the soil, the amount of rainfall, irrigation, quality od seeds, and the techniques applied to promote growth. In developed countries, cereal crops are universally machine-harvested, typically using a combine harvester, which cuts, threshes, and winnows the grain during a single pass across the field. In many industrialized countries, particularly in the United States and Canada, farmers commonly deliver their newly harvested grain to a grain elevator or a storage facility that consolidates the crops of many farmers. In developing countries, a variety of harvesting methods are used in cereal cultivation, depending on the cost of labor, from small combines to hand tools such as the scythe or cradle. Crop production systems have evolved rapidly over the past century and have resulted in significantly increased crop yields, but have also created undesirable environmental side-effects such as soil degradation and erosion, pollution from chemical fertilizers and agrochemicals and a loss of bio-diversity. Factors such as the green revolution, has led to impressive progress in increasing cereals yields over the last few decades. This progress, however, is not equal across all regions. Continued progress depends on maintaining agricultural research and education. The cultivation of cereals varies widely in different countries and depends partly upon the development of the economy. Production depends on the nature of the soil, the amount of rainfall, irrigation, quality of seeds, and the techniques applied to promote growth. Agriculture is still a major sector in many economies, and agricultural activities provide developing countries with food and revenue. But agricultural activities also can degrade natural resources. Poor farming practices can cause soil erosion and loss of soil fertility. Efforts to increase productivity by using chemical fertilizers, pesticides, and intensive irrigation have environmental costs and health impacts. Salinization of irrigated land diminishes soil fertility. Thus, inappropriate use of inputs for agricultural production has far-reaching effects. There is no single correct mix of inputs to the agricultural land, as it is dependent on local climate, land quality, and economic development; appropriate levels and application rates vary by country and over time and depend on the type of crops, the climate and soils, and the production process used. Limitations and exceptions: The data are collected by the Food and Agriculture Organization of the United Nations (FAO) through annual questionnaires. They are supplemented with information from official secondary data sources. The secondary sources cover official country data from websites of national ministries, national publications and related country data reported by various international organizations. The FAO tries to impose standard definitions and reporting methods, but complete consistency across countries and over time is not possible. Thus, data on agricultural land in different climates may not be comparable. For example, permanent pastures are quite different in nature and intensity in African countries and dry Middle Eastern countries. Data on agricultural land are valuable for conducting studies on a various perspectives concerning agricultural production, food security and for deriving cropping intensity among others uses. Statistical concept and methodology: Cereals production includes wheat, rice, maize, barley, oats, rye, millet, sorghum, buckwheat, and mixed grains. Production data on cereals relate to crops harvested for dry grain only. Cereal crops harvested for hay or harvested green for food, feed, or silage and those used for grazing are excluded. A cereal is a grass cultivated for the edible components of their grain, composed of the endosperm, germ, and bran. Cereal grains are grown in greater quantities and provide more food energy worldwide than any other type of crop; cereal crops therefore can also be called staple crops.
Publisher
The World Bank
Origin
Argentine Republic
Records
63
Source
Argentina | Land under cereal production (hectares)
1960
10287500 1961
8699220 1962
11468110 1963
12281330 1964
9866080 1965
11122075 1966
12185670 1967
12408430 1968
11884800 1969
11221810 1970
12321590 1971
11702050 1972
11688950 1973
11538000 1974
11780050 1975
13051770 1976
10542300 1977
11425900 1978
11131900 1979
9952900 1980
12377000 1981
14052800 1982
13599000 1983
12337485 1984
11508250 1985
10119555 1986
9631373 1987
8835955 1988
8515784 1989
8504919 1990
9386545 1991
8748790 1992
8370535 1993
8619890 1994
9061870 1995
8872500 1996
12189268 1997
10603135 1998
9574275 1999
10972298 2000
10785378 2001
10702110 2002
9814395 2003
9345371 2004
10291886 2005
8701693 2006
9796747 2007
10921189 2008
8046915 2009
8155785 2010
11077808 2011
11380945 2012
10581024 2013
10522262 2014
11713405 2015
11751642 2016
14135508 2017
15111458 2018
15272830 2019
16606704 2020
16885807 2021
2022
Argentina | Land under cereal production (hectares)
Land under cereal production refers to harvested area, although some countries report only sown or cultivated area. Cereals include wheat, rice, maize, barley, oats, rye, millet, sorghum, buckwheat, and mixed grains. Production data on cereals relate to crops harvested for dry grain only. Cereal crops harvested for hay or harvested green for food, feed, or silage and those used for grazing are excluded. Development relevance: The cultivation of cereals varies widely in different countries and depends partly upon the development of the economy. Production depends on the nature of the soil, the amount of rainfall, irrigation, quality od seeds, and the techniques applied to promote growth. In developed countries, cereal crops are universally machine-harvested, typically using a combine harvester, which cuts, threshes, and winnows the grain during a single pass across the field. In many industrialized countries, particularly in the United States and Canada, farmers commonly deliver their newly harvested grain to a grain elevator or a storage facility that consolidates the crops of many farmers. In developing countries, a variety of harvesting methods are used in cereal cultivation, depending on the cost of labor, from small combines to hand tools such as the scythe or cradle. Crop production systems have evolved rapidly over the past century and have resulted in significantly increased crop yields, but have also created undesirable environmental side-effects such as soil degradation and erosion, pollution from chemical fertilizers and agrochemicals and a loss of bio-diversity. Factors such as the green revolution, has led to impressive progress in increasing cereals yields over the last few decades. This progress, however, is not equal across all regions. Continued progress depends on maintaining agricultural research and education. The cultivation of cereals varies widely in different countries and depends partly upon the development of the economy. Production depends on the nature of the soil, the amount of rainfall, irrigation, quality of seeds, and the techniques applied to promote growth. Agriculture is still a major sector in many economies, and agricultural activities provide developing countries with food and revenue. But agricultural activities also can degrade natural resources. Poor farming practices can cause soil erosion and loss of soil fertility. Efforts to increase productivity by using chemical fertilizers, pesticides, and intensive irrigation have environmental costs and health impacts. Salinization of irrigated land diminishes soil fertility. Thus, inappropriate use of inputs for agricultural production has far-reaching effects. There is no single correct mix of inputs to the agricultural land, as it is dependent on local climate, land quality, and economic development; appropriate levels and application rates vary by country and over time and depend on the type of crops, the climate and soils, and the production process used. Limitations and exceptions: The data are collected by the Food and Agriculture Organization of the United Nations (FAO) through annual questionnaires. They are supplemented with information from official secondary data sources. The secondary sources cover official country data from websites of national ministries, national publications and related country data reported by various international organizations. The FAO tries to impose standard definitions and reporting methods, but complete consistency across countries and over time is not possible. Thus, data on agricultural land in different climates may not be comparable. For example, permanent pastures are quite different in nature and intensity in African countries and dry Middle Eastern countries. Data on agricultural land are valuable for conducting studies on a various perspectives concerning agricultural production, food security and for deriving cropping intensity among others uses. Statistical concept and methodology: Cereals production includes wheat, rice, maize, barley, oats, rye, millet, sorghum, buckwheat, and mixed grains. Production data on cereals relate to crops harvested for dry grain only. Cereal crops harvested for hay or harvested green for food, feed, or silage and those used for grazing are excluded. A cereal is a grass cultivated for the edible components of their grain, composed of the endosperm, germ, and bran. Cereal grains are grown in greater quantities and provide more food energy worldwide than any other type of crop; cereal crops therefore can also be called staple crops.
Publisher
The World Bank
Origin
Argentine Republic
Records
63
Source