Argentina | Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal)
Water productivity is calculated as GDP in constant prices divided by annual total water withdrawal. Development relevance: While some countries have an abundant supply of fresh water, others do not have as much. UN estimates that many areas of the world are already experiencing stress on water availability. Due to the accelerated pace of population growth and an increase in the amount of water a single person uses, it is expected that this situation will continue to get worse. The ability of developing countries to make more water available for domestic, agricultural, industrial and environmental uses will depend on better management of water resources and more cross-sectoral planning and integration. According to World Water Council, by 2020, water use is expected to increase by 40 percent, and 17 percent more water will be required for food production to meet the needs of the growing population. The three major factors causing increasing water demand over the past century are population growth, industrial development and the expansion of irrigated agriculture. There is now ample evidence that increased hydrologic variability and change in climate has and will continue to have a profound impact on the water sector through the hydrologic cycle, water availability, water demand, and water allocation at the global, regional, basin, and local levels. Properly managed water resources are a critical component of growth, poverty reduction and equity. The livelihoods of the poorest are critically associated with access to water services. A shortage of water in the future would be detrimental to the human population as it would affect everything from sanitation, to overall health and the production of grain. Limitations and exceptions: A common perception is that most of the available freshwater resources are visible (on the surfaces of lakes, reservoirs and rivers). However, this visible water represents only a tiny fraction of global freshwater resources, as most of it is stored in aquifers, with the largest stocks stored in solid form in the Antarctic and in Greenland's ice cap. The data on freshwater resources are based on estimates of runoff into rivers and recharge of groundwater. These estimates are based on different sources and refer to different years, so cross-country comparisons should be made with caution. Because the data are collected intermittently, they may hide significant variations in total renewable water resources from year to year. The data also fail to distinguish between seasonal and geographic variations in water availability within countries. Data for small countries and countries in arid and semiarid zones are less reliable than those for larger countries and countries with greater rainfall. Caution should also be used in comparing data on annual freshwater withdrawals, which are subject to variations in collection and estimation methods. In addition, inflows and outflows are estimated at different times and at different levels of quality and precision, requiring caution in interpreting the data, particularly for water-short countries, notably in the Middle East and North Africa. The data are based on surveys and estimates provided by governments to the Joint Monitoring Programme of the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF). The coverage rates are based on information from service users on actual household use rather than on information from service providers, which may include nonfunctioning systems. Statistical concept and methodology: Water productivity is an indication only of the efficiency by which each country uses its water resources. Given the different economic structure of each country, these indicators should be used carefully, taking into account a country's sectorial activities and natural resource endowments. GDP data are from World Bank's national accounts files. Water withdrawals can exceed 100 percent of total renewable resources where extraction from nonrenewable aquifers or desalination plants is considerable or where water reuse is significant. Withdrawals for agriculture and industry are total withdrawals for irrigation and livestock production and for direct industrial use (including for cooling thermoelectric plants).
Publisher
The World Bank
Origin
Argentine Republic
Records
63
Source
Argentina | Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
9.12714033 1976
9.74183716 1977
9.28554968 1978
10.2157828 1979
10.35171468 1980
9.79632384 1981
9.70629778 1982
10.10976326 1983
10.24955945 1984
9.69996184 1985
10.27782589 1986
10.53664979 1987
10.40277153 1988
9.6404781 1989
9.38573523 1990
10.22427116 1991
11.01579029 1992
11.8982789 1993
12.56993468 1994
12.19026911 1995
12.70506579 1996
13.56796104 1997
13.92047689 1998
13.2889915 1999
13.02893435 2000
12.18737859 2001
10.6315944 2002
11.3331378 2003
12.10746604 2004
12.91883927 2005
13.68804726 2006
14.63747449 2007
14.94730711 2008
13.80519894 2009
14.92970874 2010
15.54588204 2011
15.38631593 2012
15.75640664 2013
15.36050875 2014
15.7800288 2015
15.45175247 2016
15.88726057 2017
15.47142797 2018
15.1618662 2019
13.66076794 2020
2021
2022
Argentina | Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal)
Water productivity is calculated as GDP in constant prices divided by annual total water withdrawal. Development relevance: While some countries have an abundant supply of fresh water, others do not have as much. UN estimates that many areas of the world are already experiencing stress on water availability. Due to the accelerated pace of population growth and an increase in the amount of water a single person uses, it is expected that this situation will continue to get worse. The ability of developing countries to make more water available for domestic, agricultural, industrial and environmental uses will depend on better management of water resources and more cross-sectoral planning and integration. According to World Water Council, by 2020, water use is expected to increase by 40 percent, and 17 percent more water will be required for food production to meet the needs of the growing population. The three major factors causing increasing water demand over the past century are population growth, industrial development and the expansion of irrigated agriculture. There is now ample evidence that increased hydrologic variability and change in climate has and will continue to have a profound impact on the water sector through the hydrologic cycle, water availability, water demand, and water allocation at the global, regional, basin, and local levels. Properly managed water resources are a critical component of growth, poverty reduction and equity. The livelihoods of the poorest are critically associated with access to water services. A shortage of water in the future would be detrimental to the human population as it would affect everything from sanitation, to overall health and the production of grain. Limitations and exceptions: A common perception is that most of the available freshwater resources are visible (on the surfaces of lakes, reservoirs and rivers). However, this visible water represents only a tiny fraction of global freshwater resources, as most of it is stored in aquifers, with the largest stocks stored in solid form in the Antarctic and in Greenland's ice cap. The data on freshwater resources are based on estimates of runoff into rivers and recharge of groundwater. These estimates are based on different sources and refer to different years, so cross-country comparisons should be made with caution. Because the data are collected intermittently, they may hide significant variations in total renewable water resources from year to year. The data also fail to distinguish between seasonal and geographic variations in water availability within countries. Data for small countries and countries in arid and semiarid zones are less reliable than those for larger countries and countries with greater rainfall. Caution should also be used in comparing data on annual freshwater withdrawals, which are subject to variations in collection and estimation methods. In addition, inflows and outflows are estimated at different times and at different levels of quality and precision, requiring caution in interpreting the data, particularly for water-short countries, notably in the Middle East and North Africa. The data are based on surveys and estimates provided by governments to the Joint Monitoring Programme of the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF). The coverage rates are based on information from service users on actual household use rather than on information from service providers, which may include nonfunctioning systems. Statistical concept and methodology: Water productivity is an indication only of the efficiency by which each country uses its water resources. Given the different economic structure of each country, these indicators should be used carefully, taking into account a country's sectorial activities and natural resource endowments. GDP data are from World Bank's national accounts files. Water withdrawals can exceed 100 percent of total renewable resources where extraction from nonrenewable aquifers or desalination plants is considerable or where water reuse is significant. Withdrawals for agriculture and industry are total withdrawals for irrigation and livestock production and for direct industrial use (including for cooling thermoelectric plants).
Publisher
The World Bank
Origin
Argentine Republic
Records
63
Source