Cambodia | Renewable internal freshwater resources per capita (cubic meters)

Renewable internal freshwater resources flows refer to internal renewable resources (internal river flows and groundwater from rainfall) in the country. Renewable internal freshwater resources per capita are calculated using the World Bank's population estimates. Development relevance: UNESCO estimates that in developing countries in Asia, Africa and Latin America, public water withdrawal represents just 50-100 liters (13 to 26 gallons) per person per day. In regions with insufficient water resources, this figure may be as low as 20-60 (5 to 15 gallons) liters per day. People in developed countries on average consume about 10 times more water daily than those in developing countries. While some countries have an abundant supply of fresh water, others do not have as much. UN estimates that many areas of the world are already experiencing stress on water availability. Due to the accelerated pace of population growth and an increase in the amount of water a single person uses, it is expected that this situation will continue to get worse. The ability of developing countries to make more water available for domestic, agricultural, industrial and environmental uses will depend on better management of water resources and more cross-sectorial planning and integration. According to World Water Council, by 2020, water use is expected to increase by 40 percent, and 17 percent more water will be required for food production to meet the needs of the growing population. The three major factors causing increasing water demand over the past century are population growth, industrial development and the expansion of irrigated agriculture. Water productivity is an indication only of the efficiency by which each country uses its water resources. Given the different economic structure of each country, these indicators should be used carefully, taking into account a country's sectorial activities and natural resource endowments. According to Commission on Sustainable Development (CSD) agriculture accounts for more than 70 percent of freshwater drawn from lakes, rivers and underground sources. Most is used for irrigation which provides about 40 percent of the world food production. Poor management has resulted in the salinization of about 20 percent of the world's irrigated land, with an additional 1.5 million ha affected annually. There is now ample evidence that increased hydrologic variability and change in climate has and will continue to have a profound impact on the water sector through the hydrologic cycle, water availability, water demand, and water allocation at the global, regional, basin, and local levels. Properly managed water resources are a critical component of growth, poverty reduction and equity. The livelihoods of the poorest are critically associated with access to water services. A shortage of water in the future would be detrimental to the human population as it would affect everything from sanitation, to overall health and the production of grain. Freshwater use by continents is partly based on several socio-economic development factors, including population, physiography, and climatic characteristics. It is estimated that in the coming decades the most intensive growth of water withdrawal is expected to occur in Africa and South America (increasing by 1.5-1.6 times), while the smallest growth will take place in Europe and North America (1.2 times). The Commission for Sustainable Development (CSD) has reported that many countries lack adequate legislation and policies for efficient and equitable allocation and use of water resources. Progress is, however, being made with the review of national legislation and enactment of new laws and regulations. Limitations and exceptions: A common perception is that most of the available freshwater resources are visible (on the surfaces of lakes, reservoirs and rivers). However, this visible water represents only a tiny fraction of global freshwater resources, as most of it is stored in aquifers, with the largest stocks stored in solid form in the Antarctic and in Greenland's ice cap. The data on freshwater resources are based on estimates of runoff into rivers and recharge of groundwater. These estimates are based on different sources and refer to different years, so cross-country comparisons should be made with caution. Because the data are collected intermittently, they may hide significant variations in total renewable water resources from year to year. The data also fail to distinguish between seasonal and geographic variations in water availability within countries. Data for small countries and countries in arid and semiarid zones are less reliable than those for larger countries and countries with greater rainfall. Caution should also be used in comparing data on annual freshwater withdrawals, which are subject to variations in collection and estimation methods. In addition, inflows and outflows are estimated at different times and at different levels of quality and precision, requiring caution in interpreting the data, particularly for water-short countries, notably in the Middle East and North Africa. The data are based on surveys and estimates provided by governments to the Joint Monitoring Programme of the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF). The coverage rates are based on information from service users on actual household use rather than on information from service providers, which may include nonfunctioning systems. Statistical concept and methodology: Renewable water resources (internal and external) include average annual flow of rivers and recharge of aquifers generated from endogenous precipitation, and those water resources that are not generated in the country, such as inflows from upstream countries (groundwater and surface water), and part of the water of border lakes and/or rivers. Non-renewable water includes groundwater bodies (deep aquifers) that have a negligible rate of recharge on the human time-scale. While renewable water resources are expressed in flows, non-renewable water resources have to be expressed in quantity (stock). Runoff from glaciers where the mass balance is negative is considered non-renewable. Renewable internal freshwater resources per capita are calculated using the World Bank's population estimates. The unit of calculation is m3/year per inhabitant. Internal renewable freshwater resources per capita are calculated using the World Bank's population estimates. Total actual renewable water resources correspond to the maximum theoretical yearly amount of water actually available for a country at a given moment. The unit of calculation is km3/year or 109 m3/year. Calculation Criteria is [Water resources: total renewable (actual)] = [Surface water: total renewable (actual)] + [Groundwater: total renewable (actual)] - [Overlap between surface water and groundwater].* Fresh water is naturally occurring water on the Earth's surface. It is a renewable but limited natural resource. Fresh water can only be renewed through the process of the water cycle, where water from seas, lakes, forests, land, rivers, and dams evaporates, forms clouds, and returns as precipitation. However, if more fresh water is consumed through human activities than is restored by nature, the result is that the quantity of fresh water available in lakes, rivers, dams and underground waters can be reduced which can cause serious damage to the surrounding environment. * http://www.fao.org/nr/water/aquastat/data/glossary/search.html?termId=4188&submitBtn=s&cls=yes
Publisher
The World Bank
Origin
Kingdom of Cambodia
Records
63
Source
Cambodia | Renewable internal freshwater resources per capita (cubic meters)
1960
1961 21289.91461791
1962 20833.13899435
1963 20393.39294652
1964 19964.08781749
1965 19543.88842676
1966 19145.19711139
1967 18766.2074444
1968 18403.47841002
1969 18054.68143218
1970 17977.12611938
1971 18009.88124231
1972 17823.65488675
1973 17599.77584365
1974 17444.36318528
1975 17925.29699363
1976 19121.24103513
1977 19966.23620057
1978 20230.84976447
1979 19927.92897594
1980 19454.87944024
1981 18948.94030487
1982 18218.35101566
1983 17524.0723503
1984 16905.2014894
1985 16350.1258797
1986 15741.41887093
1987 15121.12510198
1988 14583.21744956
1989 14070.82173599
1990 13534.12619821
1991 13024.65547842
1992 12409.68634672
1993 11773.26219914
1994 11338.47287693
1995 11044.4334224
1996 10784.60023472
1997 10549.73293692
1998 10335.00764456
1999 10135.30037719
2000 9951.44667712
2001 9774.5277428
2002 9600.55100476
2003 9430.93016654
2004 9265.25526969
2005 9104.23465433
2006 8948.06184313
2007 8793.42601721
2008 8648.95070873
2009 8519.51222614
2010 8396.26353741
2011 8275.07558897
2012 8156.01110191
2013 8040.16991559
2014 7928.56820248
2015 7822.26820742
2016 7718.60550015
2017 7618.11441056
2018 7525.62926055
2019 7440.8865983
2020 7355.06676278
2021
2022

Cambodia | Renewable internal freshwater resources per capita (cubic meters)

Renewable internal freshwater resources flows refer to internal renewable resources (internal river flows and groundwater from rainfall) in the country. Renewable internal freshwater resources per capita are calculated using the World Bank's population estimates. Development relevance: UNESCO estimates that in developing countries in Asia, Africa and Latin America, public water withdrawal represents just 50-100 liters (13 to 26 gallons) per person per day. In regions with insufficient water resources, this figure may be as low as 20-60 (5 to 15 gallons) liters per day. People in developed countries on average consume about 10 times more water daily than those in developing countries. While some countries have an abundant supply of fresh water, others do not have as much. UN estimates that many areas of the world are already experiencing stress on water availability. Due to the accelerated pace of population growth and an increase in the amount of water a single person uses, it is expected that this situation will continue to get worse. The ability of developing countries to make more water available for domestic, agricultural, industrial and environmental uses will depend on better management of water resources and more cross-sectorial planning and integration. According to World Water Council, by 2020, water use is expected to increase by 40 percent, and 17 percent more water will be required for food production to meet the needs of the growing population. The three major factors causing increasing water demand over the past century are population growth, industrial development and the expansion of irrigated agriculture. Water productivity is an indication only of the efficiency by which each country uses its water resources. Given the different economic structure of each country, these indicators should be used carefully, taking into account a country's sectorial activities and natural resource endowments. According to Commission on Sustainable Development (CSD) agriculture accounts for more than 70 percent of freshwater drawn from lakes, rivers and underground sources. Most is used for irrigation which provides about 40 percent of the world food production. Poor management has resulted in the salinization of about 20 percent of the world's irrigated land, with an additional 1.5 million ha affected annually. There is now ample evidence that increased hydrologic variability and change in climate has and will continue to have a profound impact on the water sector through the hydrologic cycle, water availability, water demand, and water allocation at the global, regional, basin, and local levels. Properly managed water resources are a critical component of growth, poverty reduction and equity. The livelihoods of the poorest are critically associated with access to water services. A shortage of water in the future would be detrimental to the human population as it would affect everything from sanitation, to overall health and the production of grain. Freshwater use by continents is partly based on several socio-economic development factors, including population, physiography, and climatic characteristics. It is estimated that in the coming decades the most intensive growth of water withdrawal is expected to occur in Africa and South America (increasing by 1.5-1.6 times), while the smallest growth will take place in Europe and North America (1.2 times). The Commission for Sustainable Development (CSD) has reported that many countries lack adequate legislation and policies for efficient and equitable allocation and use of water resources. Progress is, however, being made with the review of national legislation and enactment of new laws and regulations. Limitations and exceptions: A common perception is that most of the available freshwater resources are visible (on the surfaces of lakes, reservoirs and rivers). However, this visible water represents only a tiny fraction of global freshwater resources, as most of it is stored in aquifers, with the largest stocks stored in solid form in the Antarctic and in Greenland's ice cap. The data on freshwater resources are based on estimates of runoff into rivers and recharge of groundwater. These estimates are based on different sources and refer to different years, so cross-country comparisons should be made with caution. Because the data are collected intermittently, they may hide significant variations in total renewable water resources from year to year. The data also fail to distinguish between seasonal and geographic variations in water availability within countries. Data for small countries and countries in arid and semiarid zones are less reliable than those for larger countries and countries with greater rainfall. Caution should also be used in comparing data on annual freshwater withdrawals, which are subject to variations in collection and estimation methods. In addition, inflows and outflows are estimated at different times and at different levels of quality and precision, requiring caution in interpreting the data, particularly for water-short countries, notably in the Middle East and North Africa. The data are based on surveys and estimates provided by governments to the Joint Monitoring Programme of the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF). The coverage rates are based on information from service users on actual household use rather than on information from service providers, which may include nonfunctioning systems. Statistical concept and methodology: Renewable water resources (internal and external) include average annual flow of rivers and recharge of aquifers generated from endogenous precipitation, and those water resources that are not generated in the country, such as inflows from upstream countries (groundwater and surface water), and part of the water of border lakes and/or rivers. Non-renewable water includes groundwater bodies (deep aquifers) that have a negligible rate of recharge on the human time-scale. While renewable water resources are expressed in flows, non-renewable water resources have to be expressed in quantity (stock). Runoff from glaciers where the mass balance is negative is considered non-renewable. Renewable internal freshwater resources per capita are calculated using the World Bank's population estimates. The unit of calculation is m3/year per inhabitant. Internal renewable freshwater resources per capita are calculated using the World Bank's population estimates. Total actual renewable water resources correspond to the maximum theoretical yearly amount of water actually available for a country at a given moment. The unit of calculation is km3/year or 109 m3/year. Calculation Criteria is [Water resources: total renewable (actual)] = [Surface water: total renewable (actual)] + [Groundwater: total renewable (actual)] - [Overlap between surface water and groundwater].* Fresh water is naturally occurring water on the Earth's surface. It is a renewable but limited natural resource. Fresh water can only be renewed through the process of the water cycle, where water from seas, lakes, forests, land, rivers, and dams evaporates, forms clouds, and returns as precipitation. However, if more fresh water is consumed through human activities than is restored by nature, the result is that the quantity of fresh water available in lakes, rivers, dams and underground waters can be reduced which can cause serious damage to the surrounding environment. * http://www.fao.org/nr/water/aquastat/data/glossary/search.html?termId=4188&submitBtn=s&cls=yes
Publisher
The World Bank
Origin
Kingdom of Cambodia
Records
63
Source