Congo, Dem. Rep. | Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)
Agricultural nitrous oxide emissions are emissions produced through fertilizer use (synthetic and animal manure), animal waste management, agricultural waste burning (nonenergy, on-site), and savanna burning. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: This series excludes Land-use Change & Forestry (LUCF). The world data includes international bunker fuel-related emissions and emissions from territories not part of the United Nations Framework Convention on Climate Change (UNFCCC). Statistical concept and methodology: Agricultural nitrous oxide emissions are emissions produced through fertilizer use (synthetic and animal manure), animal waste management, agricultural waste burning (nonenergy, on-site), and savannah burning. IPCC category 4 = Agriculture. Expressed in CO2 equivalent using the GWP100 metric of the Second Assessment Report of IPCC and include N2O (GWP100=310).
Publisher
The World Bank
Origin
Democratic Republic of the Congo
Records
63
Source
Congo, Dem. Rep. | Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
12774.6342 1990
12695.694 1991
12733.9274 1992
12706.9882 1993
12701.8626 1994
12626.4388 1995
9849.8536 1996
9605.7022 1997
10101.6338 1998
9175.718 1999
8985.5344 2000
9849.7642 2001
12433.9606 2002
13622.4144 2003
14553.9326 2004
14303.1656 2005
14508.2194 2006
12722.3948 2007
13485.99 2008
13335.5 2009
13982.8454 2010
13150.144 2011
12799.249 2012
13442.482 2013
13049.271 2014
13544.9642 2015
13435.926 2016
14015.7148 2017
13154.9418 2018
13618.6298 2019
13694.0834 2020
2021
2022
Congo, Dem. Rep. | Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)
Agricultural nitrous oxide emissions are emissions produced through fertilizer use (synthetic and animal manure), animal waste management, agricultural waste burning (nonenergy, on-site), and savanna burning. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: This series excludes Land-use Change & Forestry (LUCF). The world data includes international bunker fuel-related emissions and emissions from territories not part of the United Nations Framework Convention on Climate Change (UNFCCC). Statistical concept and methodology: Agricultural nitrous oxide emissions are emissions produced through fertilizer use (synthetic and animal manure), animal waste management, agricultural waste burning (nonenergy, on-site), and savannah burning. IPCC category 4 = Agriculture. Expressed in CO2 equivalent using the GWP100 metric of the Second Assessment Report of IPCC and include N2O (GWP100=310).
Publisher
The World Bank
Origin
Democratic Republic of the Congo
Records
63
Source