Curacao | CO2 emissions from manufacturing industries and construction (% of total fuel combustion)
CO2 emissions from manufacturing industries and construction contains the emissions from combustion of fuels in industry. The IPCC Source/Sink Category 1 A 2 includes these emissions. However, in the 1996 IPCC Guidelines, the IPCC category also includes emissions from industry autoproducers that generate electricity and/or heat. The IEA data are not collected in a way that allows the energy consumption to be split by specific end-use and therefore, autoproducers are shown as a separate item (Unallocated Autoproducers). Manufacturing industries and construction also includes emissions from coke inputs into blast furnaces, which may be reported either in the transformation sector, the industry sector or the separate IPCC Source/Sink Category 2, Industrial Processes. Development relevance: Carbon dioxide (CO2) is naturally occurring gas fixed by photosynthesis into organic matter. A byproduct of fossil fuel combustion and biomass burning, it is also emitted from land use changes and other industrial processes. It is the principal anthropogenic greenhouse gas that affects the Earth's radiative balance. It is the reference gas against which other greenhouse gases are measured, thus having a Global Warming Potential of 1. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. Burning of carbon-based fuels since the industrial revolution has rapidly increased concentrations of atmospheric carbon dioxide, increasing the rate of global warming and causing anthropogenic climate change. It is also a major source of ocean acidification since it dissolves in water to form carbonic acid. The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Global emissions of carbon dioxide have risen by 99%, or on average 2.0% per year, since 1971, and are projected to rise by another 45% by 2030, or by 1.6% per year. It is estimated that emissions in China have risen by 5.7 percent per annum between 1971 and 2006 - the use of coal in China increased levels of CO2 by 4.8 billion tonnes over this period. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: As a response to the objectives of the UNFCCC, the IEA Secretariat, together with the IPCC, the OECD and umerous international experts, has helped to develop and refine an internationally-agreed methodology for the calculation and reporting of national greenhouse-gas emissions from fuel combustion. This methodology was published in 1995 in the IPCC Guidelines for National Greenhouse Gas Inventories. After the initial dissemination of the methodology, revisions were added to several chapters, and published as the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (1996 IPCC Guidelines). In April 2006, the IPCC approved the 2006 Guidelines at the 25th session of the IPCC in Mauritius. For now, most countries (as well as the IEA Secretariat) are still calculating their inventories using the 1996 IPCC Guidelines.1. Both the 1996 IPCC Guidelines and the 2006 IPCC Guidelines are available from the IPCC Greenhouse Gas Inventories Programme (www.ipcc-nggip.iges.or.jp). Since the IPCC methodology for fuel combustion is largely based on energy balances, the IEA estimates for CO2 from fuel combustion have been calculated using the IEA energy balances and the default IPCC methodology. However, other possibly more detailed methodologies may be used by Parties to calculate their inventories. This may lead to different estimates of emissions. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. Statistical concept and methodology: Carbon dioxide emissions account for the largest share of greenhouse gases, which are associated with global warming. In 2010 the International Energy Agency (IEA) released data on carbon dioxide emissions by sector for the first time, allowing a more comprehensive understanding of each sector's contribution to total emissions. The sectoral approach yields data on carbon dioxide emissions from fuel combustion (Intergovernmental Panel on Climate Change [IPCC] source/sink category 1A) as calculated using the IPCC tier 1 sectoral approach. Carbon dioxide emissions from manufacturing industries and construction are the emissions from fuel combustion in industry (IPCC source/sink Category 1A2). Although in the 1996 IPCC guidelines, this category included emissions from industry autoproducers that generate electricity or heat, the IEA data do not allow energy consumption to be categorized by end-use, and thus emissions from autoproducers are listed separately under unallocated autoproducers. Emissions from manufacturing industries and construction include those from coke inputs into blast furnaces, which may be reported under the transformation sector, the industry sector, or industrial processes (IPCC source/sink category 2). Carbon dioxide emissions, largely by-products of energy production and use, account for the largest share of greenhouse gases, which are associated with global warming. Anthropogenic carbon dioxide emissions result primarily from fossil fuel combustion and cement manufacturing. In combustion different fossil fuels release different amounts of carbon dioxide for the same level of energy use: oil releases about 50 percent more carbon dioxide than natural gas, and coal releases about twice as much. Cement manufacturing releases about half a metric ton of carbon dioxide for each metric ton of cement produced.
Publisher
The World Bank
Origin
Curacao
Records
63
Source
Curacao | CO2 emissions from manufacturing industries and construction (% of total fuel combustion)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
31.97794624 1971
32.17576187 1972
32.62820513 1973
33.00283286 1974
31.69774289 1975
32.74907749 1976
32.69581056 1977
17.79935275 1978
21.1328976 1979
12.68742791 1980
14.80099502 1981
16.04938272 1982
17.59530792 1983
16.74140508 1984
23.77777778 1985
23.77622378 1986
24.49494949 1987
23.12138728 1988
22.03389831 1989
20.30075188 1990
19.56521739 1991
18.88111888 1992
18.53448276 1993
16.34980989 1994
15.96958175 1995
16.16541353 1996
8.36501901 1997
8.47145488 1998
8.90538033 1999
8.91265597 2000
8.97887324 2001
9.39226519 2002
9.375 2003
9.33098592 2004
9.01502504 2005
9.33786078 2006
9.0625 2007
9.3206951 2008
9.44350759 2009
13.24200913 2010
10.54545455 2011
8.59030837 2012
8.84353741 2013
8.42105263 2014
2015
2016
2017
2018
2019
2020
2021
2022
Curacao | CO2 emissions from manufacturing industries and construction (% of total fuel combustion)
CO2 emissions from manufacturing industries and construction contains the emissions from combustion of fuels in industry. The IPCC Source/Sink Category 1 A 2 includes these emissions. However, in the 1996 IPCC Guidelines, the IPCC category also includes emissions from industry autoproducers that generate electricity and/or heat. The IEA data are not collected in a way that allows the energy consumption to be split by specific end-use and therefore, autoproducers are shown as a separate item (Unallocated Autoproducers). Manufacturing industries and construction also includes emissions from coke inputs into blast furnaces, which may be reported either in the transformation sector, the industry sector or the separate IPCC Source/Sink Category 2, Industrial Processes. Development relevance: Carbon dioxide (CO2) is naturally occurring gas fixed by photosynthesis into organic matter. A byproduct of fossil fuel combustion and biomass burning, it is also emitted from land use changes and other industrial processes. It is the principal anthropogenic greenhouse gas that affects the Earth's radiative balance. It is the reference gas against which other greenhouse gases are measured, thus having a Global Warming Potential of 1. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. Burning of carbon-based fuels since the industrial revolution has rapidly increased concentrations of atmospheric carbon dioxide, increasing the rate of global warming and causing anthropogenic climate change. It is also a major source of ocean acidification since it dissolves in water to form carbonic acid. The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Global emissions of carbon dioxide have risen by 99%, or on average 2.0% per year, since 1971, and are projected to rise by another 45% by 2030, or by 1.6% per year. It is estimated that emissions in China have risen by 5.7 percent per annum between 1971 and 2006 - the use of coal in China increased levels of CO2 by 4.8 billion tonnes over this period. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: As a response to the objectives of the UNFCCC, the IEA Secretariat, together with the IPCC, the OECD and umerous international experts, has helped to develop and refine an internationally-agreed methodology for the calculation and reporting of national greenhouse-gas emissions from fuel combustion. This methodology was published in 1995 in the IPCC Guidelines for National Greenhouse Gas Inventories. After the initial dissemination of the methodology, revisions were added to several chapters, and published as the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (1996 IPCC Guidelines). In April 2006, the IPCC approved the 2006 Guidelines at the 25th session of the IPCC in Mauritius. For now, most countries (as well as the IEA Secretariat) are still calculating their inventories using the 1996 IPCC Guidelines.1. Both the 1996 IPCC Guidelines and the 2006 IPCC Guidelines are available from the IPCC Greenhouse Gas Inventories Programme (www.ipcc-nggip.iges.or.jp). Since the IPCC methodology for fuel combustion is largely based on energy balances, the IEA estimates for CO2 from fuel combustion have been calculated using the IEA energy balances and the default IPCC methodology. However, other possibly more detailed methodologies may be used by Parties to calculate their inventories. This may lead to different estimates of emissions. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. Statistical concept and methodology: Carbon dioxide emissions account for the largest share of greenhouse gases, which are associated with global warming. In 2010 the International Energy Agency (IEA) released data on carbon dioxide emissions by sector for the first time, allowing a more comprehensive understanding of each sector's contribution to total emissions. The sectoral approach yields data on carbon dioxide emissions from fuel combustion (Intergovernmental Panel on Climate Change [IPCC] source/sink category 1A) as calculated using the IPCC tier 1 sectoral approach. Carbon dioxide emissions from manufacturing industries and construction are the emissions from fuel combustion in industry (IPCC source/sink Category 1A2). Although in the 1996 IPCC guidelines, this category included emissions from industry autoproducers that generate electricity or heat, the IEA data do not allow energy consumption to be categorized by end-use, and thus emissions from autoproducers are listed separately under unallocated autoproducers. Emissions from manufacturing industries and construction include those from coke inputs into blast furnaces, which may be reported under the transformation sector, the industry sector, or industrial processes (IPCC source/sink category 2). Carbon dioxide emissions, largely by-products of energy production and use, account for the largest share of greenhouse gases, which are associated with global warming. Anthropogenic carbon dioxide emissions result primarily from fossil fuel combustion and cement manufacturing. In combustion different fossil fuels release different amounts of carbon dioxide for the same level of energy use: oil releases about 50 percent more carbon dioxide than natural gas, and coal releases about twice as much. Cement manufacturing releases about half a metric ton of carbon dioxide for each metric ton of cement produced.
Publisher
The World Bank
Origin
Curacao
Records
63
Source