Czechia | Other greenhouse gas emissions, HFC, PFC and SF6 (thousand metric tons of CO2 equivalent)
Other greenhouse gas emissions are by-product emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC). Statistical concept and methodology: Other greenhouse gas emissions are by-product emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride (F-gases (c-C4F8 GWP=8700, C2F6 GWP=9200, C3F8 GWP=7000, C4F10 GWP=7000, C5F12 GWP=7500, C6F14 GWP=7400, C7F16 GWP=7820, CF4 GWP=6500, HFC-125 GWP=2800, HFC-134a GWP=1300, HFC-143a GWP=3800, HFC-152a GWP=140, HFC-227ea GWP=2900, HFC-23 GWP=11700, HFC-236fa GWP=6300, HFC-245fa GWP=858, HFC-32 GWP=650, HFC-365mfc GWP=804, HFC-43-10-mee GWP=1300, SF6 GWP=23900). Derived as residuals from total GHG emissions, CO2 emissions, CH4 emissions, and N2O emissions in kt of CO equivalent. Other greenhouse gases covered under the Kyoto Protocol are hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. Although emissions of these artificial gases are small, they are more powerful greenhouse gases than carbon dioxide, with much higher atmospheric lifetimes and high global warming potential. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.
Publisher
The World Bank
Origin
Czechia
Records
63
Source
Czechia | Other greenhouse gas emissions, HFC, PFC and SF6 (thousand metric tons of CO2 equivalent)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
-4602.94425781 1970
-4606.84250781 1971
-4646.31179297 1972
-4395.48943984 1973
-4002.91845156 1974
-4213.77436719 1975
-4392.94799609 1976
-4685.84235156 1977
-1026.86656641 1978
-1511.67084375 1979
-1030.16201172 1980
-982.91646484 1981
-605.40677734 1982
-734.71103516 1983
-932.11392578 1984
-944.98289063 1985
-1117.80576172 1986
-1576.71333984 1987
-1309.92244141 1988
-830.68353516 1989
-18533.23388672 1990
-15869.09716797 1991
-8058.703125 1992
-6937.26611328 1993
-6768.35058594 1994
-6799.09716797 1995
-6753.76757813 1996
-6220.71582031 1997
-6399.75976563 1998
-6233.62011719 1999
-6262.97265625 2000
-6091.50488281 2001
-4571.76025391 2002
-4035.67041016 2003
-4729.03027344 2004
-4945.45898438 2005
-5954.51074219 2006
-4024.90332031 2007
-3950.65039063 2008
-2696.12109375 2009
-4053.98486328 2010
-5436.54541016 2011
-7003.05029297 2012
-6920.25488281 2013
-5365.49023438 2014
-6305.38525391 2015
-5775.43017578 2016
2017
2018
2019
2020
2021
2022
Czechia | Other greenhouse gas emissions, HFC, PFC and SF6 (thousand metric tons of CO2 equivalent)
Other greenhouse gas emissions are by-product emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC). Statistical concept and methodology: Other greenhouse gas emissions are by-product emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride (F-gases (c-C4F8 GWP=8700, C2F6 GWP=9200, C3F8 GWP=7000, C4F10 GWP=7000, C5F12 GWP=7500, C6F14 GWP=7400, C7F16 GWP=7820, CF4 GWP=6500, HFC-125 GWP=2800, HFC-134a GWP=1300, HFC-143a GWP=3800, HFC-152a GWP=140, HFC-227ea GWP=2900, HFC-23 GWP=11700, HFC-236fa GWP=6300, HFC-245fa GWP=858, HFC-32 GWP=650, HFC-365mfc GWP=804, HFC-43-10-mee GWP=1300, SF6 GWP=23900). Derived as residuals from total GHG emissions, CO2 emissions, CH4 emissions, and N2O emissions in kt of CO equivalent. Other greenhouse gases covered under the Kyoto Protocol are hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. Although emissions of these artificial gases are small, they are more powerful greenhouse gases than carbon dioxide, with much higher atmospheric lifetimes and high global warming potential. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.
Publisher
The World Bank
Origin
Czechia
Records
63
Source