Equatorial Guinea | Nitrous oxide emissions in energy sector (% of total)

Nitrous oxide emissions from energy processes are emissions produced by the combustion of fossil fuels and biofuels. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC). Statistical concept and methodology: Nitrous oxide emissions are mainly from fossil fuel combustion, fertilizers, rainforest fires, and animal waste. Nitrous oxide is a powerful greenhouse gas, with an estimated atmospheric lifetime of 114 years, compared with 12 years for methane. The per kilogram global warming potential of nitrous oxide is nearly 310 times that of carbon dioxide within 100 years. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.
Publisher
The World Bank
Origin
Equatorial Guinea
Records
63
Source
Equatorial Guinea | Nitrous oxide emissions in energy sector (% of total)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970 44.63486016
1971 44.45471321
1972 44.02223512
1973 45.01283277
1974 45.02046415
1975 44.8672107
1976 45.81531222
1977 45.77955867
1978 46.09029933
1979 46.42104772
1980 46.52093518
1981 46.12245024
1982 46.80291666
1983 46.7998721
1984 46.38990411
1985 46.09542217
1986 45.64980053
1987 45.41339964
1988 43.72455452
1989 43.647081
1990 50
1991 50
1992 50
1993 50
1994 50
1995 50
1996 50
1997 50
1998 50
1999 50
2000 50
2001 50
2002 33.33333333
2003 33.33333333
2004 33.33333333
2005 33.33333333
2006 33.33333333
2007 33.33333333
2008 33.33333333
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022

Equatorial Guinea | Nitrous oxide emissions in energy sector (% of total)

Nitrous oxide emissions from energy processes are emissions produced by the combustion of fossil fuels and biofuels. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC). Statistical concept and methodology: Nitrous oxide emissions are mainly from fossil fuel combustion, fertilizers, rainforest fires, and animal waste. Nitrous oxide is a powerful greenhouse gas, with an estimated atmospheric lifetime of 114 years, compared with 12 years for methane. The per kilogram global warming potential of nitrous oxide is nearly 310 times that of carbon dioxide within 100 years. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.
Publisher
The World Bank
Origin
Equatorial Guinea
Records
63
Source