Europe & Central Asia (excluding high income) | Probability of dying among adolescents ages 15-19 years (per 1,000)
Probability of dying between age 15-19 years of age expressed per 1,000 adolescents age 15, if subject to age-specific mortality rates of the specified year. Development relevance: Mortality rates for different age groups (infants, children, adolescents, youth and adults) and overall mortality indicators (life expectancy at birth or survival to a given age) are important indicators of health status in a country. Because data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. And they are among the indicators most frequently used to compare socioeconomic development across countries. Limitations and exceptions: Complete vital registration systems are fairly uncommon in developing countries. Thus estimates must be obtained from sample surveys or derived by applying indirect estimation techniques to registration, census, or survey data. Survey data are subject to recall error, and surveys estimating infant/child deaths require large samples because households in which a birth has occurred during a given year cannot ordinarily be preselected for sampling. Indirect estimates rely on model life tables that may be inappropriate for the population concerned. Extrapolations based on outdated surveys may not be reliable for monitoring changes in health status or for comparative analytical work. Statistical concept and methodology: The main sources of mortality data are vital registration systems and direct or indirect estimates based on sample surveys or censuses. A "complete" vital registration system - covering at least 90 percent of vital events in the population - is the best source of age-specific mortality data. Estimates of neonatal, infant, and child mortality tend to vary by source and method for a given time and place. Years for available estimates also vary by country, making comparisons across countries and over time difficult. To make neonatal, infant, and child mortality estimates comparable and to ensure consistency across estimates by different agencies, the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME), which comprises the United Nations Children's Fund (UNICEF), the World Health Organization (WHO), the World Bank, the United Nations Population Division, and other universities and research institutes, developed and adopted a statistical method that uses all available information to reconcile differences. The method uses statistical models to obtain a best estimate trend line by fitting a country-specific regression model of mortality rates against their reference dates.
Publisher
The World Bank
Origin
Europe & Central Asia (excluding high income)
Records
63
Source
Europe & Central Asia (excluding high income) | Probability of dying among adolescents ages 15-19 years (per 1,000)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
5.53728764 1990
5.72660486 1991
6.39485037 1992
6.62749231 1993
6.42460086 1994
6.40412158 1995
5.90512284 1996
5.70010127 1997
5.59122321 1998
5.72835641 1999
5.40904384 2000
5.20300915 2001
4.95639443 2002
4.66230871 2003
4.42138841 2004
4.30783273 2005
4.14195628 2006
3.9526095 2007
3.76688501 2008
3.53666429 2009
3.35501107 2010
3.22511883 2011
3.13286219 2012
3.03008619 2013
3.02988311 2014
2.90953224 2015
2.86977423 2016
2.71249255 2017
2.61407914 2018
2.54956303 2019
2.59293993 2020
2.57212004 2021
2022
Europe & Central Asia (excluding high income) | Probability of dying among adolescents ages 15-19 years (per 1,000)
Probability of dying between age 15-19 years of age expressed per 1,000 adolescents age 15, if subject to age-specific mortality rates of the specified year. Development relevance: Mortality rates for different age groups (infants, children, adolescents, youth and adults) and overall mortality indicators (life expectancy at birth or survival to a given age) are important indicators of health status in a country. Because data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. And they are among the indicators most frequently used to compare socioeconomic development across countries. Limitations and exceptions: Complete vital registration systems are fairly uncommon in developing countries. Thus estimates must be obtained from sample surveys or derived by applying indirect estimation techniques to registration, census, or survey data. Survey data are subject to recall error, and surveys estimating infant/child deaths require large samples because households in which a birth has occurred during a given year cannot ordinarily be preselected for sampling. Indirect estimates rely on model life tables that may be inappropriate for the population concerned. Extrapolations based on outdated surveys may not be reliable for monitoring changes in health status or for comparative analytical work. Statistical concept and methodology: The main sources of mortality data are vital registration systems and direct or indirect estimates based on sample surveys or censuses. A "complete" vital registration system - covering at least 90 percent of vital events in the population - is the best source of age-specific mortality data. Estimates of neonatal, infant, and child mortality tend to vary by source and method for a given time and place. Years for available estimates also vary by country, making comparisons across countries and over time difficult. To make neonatal, infant, and child mortality estimates comparable and to ensure consistency across estimates by different agencies, the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME), which comprises the United Nations Children's Fund (UNICEF), the World Health Organization (WHO), the World Bank, the United Nations Population Division, and other universities and research institutes, developed and adopted a statistical method that uses all available information to reconcile differences. The method uses statistical models to obtain a best estimate trend line by fitting a country-specific regression model of mortality rates against their reference dates.
Publisher
The World Bank
Origin
Europe & Central Asia (excluding high income)
Records
63
Source