Guyana | Agricultural methane emissions (thousand metric tons of CO2 equivalent)
Agricultural methane emissions are emissions from animals, animal waste, rice production, agricultural waste burning (nonenergy, on-site), and savanna burning. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: This series excludes Land-use Change & Forestry (LUCF). The world data includes international bunker fuel-related emissions and emissions from territories not part of the United Nations Framework Convention on Climate Change (UNFCCC). Statistical concept and methodology: IPCC category 4 = Agriculture. Expressed in CO2 equivalent using the GWP100 metric of the Second Assessment Report of IPCC and include CH4 (GWP100=21). Methane emissions result largely from agricultural activities, industrial production landfills and wastewater treatment, and other sources such as tropical forest and other vegetation fires. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared. A kilogram of methane is 21 times as effective at trapping heat in the earth's atmosphere as a kilogram of carbon dioxide within 100 years. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.
Publisher
The World Bank
Origin
Co-operative Republic of Guyana
Records
63
Source
Guyana | Agricultural methane emissions (thousand metric tons of CO2 equivalent)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990 628.7575
1991 831.3
1992 888.275
1993 1008.7975
1994 991.4025
1995 1188.1775
1996 1183.3425
1997 1220.475
1998 1127.0775
1999 1226.295
2000 1003.505
2001 1056.6525
2002 938.8225
2003 1116.2025
2004 1005.11
2005 939.035
2006 902.6775
2007 933.725
2008 1018.3975
2009 1063.1875
2010 1111.1625
2011 1171.3175
2012 1199.2125
2013 1340.4125
2014 1480.0325
2015 1535.8625
2016 1242.8325
2017 1388.9625
2018 1341.4625
2019 1416.28
2020 1471.7575
2021
2022
Guyana | Agricultural methane emissions (thousand metric tons of CO2 equivalent)
Agricultural methane emissions are emissions from animals, animal waste, rice production, agricultural waste burning (nonenergy, on-site), and savanna burning. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: This series excludes Land-use Change & Forestry (LUCF). The world data includes international bunker fuel-related emissions and emissions from territories not part of the United Nations Framework Convention on Climate Change (UNFCCC). Statistical concept and methodology: IPCC category 4 = Agriculture. Expressed in CO2 equivalent using the GWP100 metric of the Second Assessment Report of IPCC and include CH4 (GWP100=21). Methane emissions result largely from agricultural activities, industrial production landfills and wastewater treatment, and other sources such as tropical forest and other vegetation fires. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared. A kilogram of methane is 21 times as effective at trapping heat in the earth's atmosphere as a kilogram of carbon dioxide within 100 years. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.
Publisher
The World Bank
Origin
Co-operative Republic of Guyana
Records
63
Source