High income | Renewable internal freshwater resources per capita (cubic meters)
Renewable internal freshwater resources flows refer to internal renewable resources (internal river flows and groundwater from rainfall) in the country. Renewable internal freshwater resources per capita are calculated using the World Bank's population estimates. Development relevance: UNESCO estimates that in developing countries in Asia, Africa and Latin America, public water withdrawal represents just 50-100 liters (13 to 26 gallons) per person per day. In regions with insufficient water resources, this figure may be as low as 20-60 (5 to 15 gallons) liters per day. People in developed countries on average consume about 10 times more water daily than those in developing countries. While some countries have an abundant supply of fresh water, others do not have as much. UN estimates that many areas of the world are already experiencing stress on water availability. Due to the accelerated pace of population growth and an increase in the amount of water a single person uses, it is expected that this situation will continue to get worse. The ability of developing countries to make more water available for domestic, agricultural, industrial and environmental uses will depend on better management of water resources and more cross-sectorial planning and integration. According to World Water Council, by 2020, water use is expected to increase by 40 percent, and 17 percent more water will be required for food production to meet the needs of the growing population. The three major factors causing increasing water demand over the past century are population growth, industrial development and the expansion of irrigated agriculture. Water productivity is an indication only of the efficiency by which each country uses its water resources. Given the different economic structure of each country, these indicators should be used carefully, taking into account a country's sectorial activities and natural resource endowments. According to Commission on Sustainable Development (CSD) agriculture accounts for more than 70 percent of freshwater drawn from lakes, rivers and underground sources. Most is used for irrigation which provides about 40 percent of the world food production. Poor management has resulted in the salinization of about 20 percent of the world's irrigated land, with an additional 1.5 million ha affected annually. There is now ample evidence that increased hydrologic variability and change in climate has and will continue to have a profound impact on the water sector through the hydrologic cycle, water availability, water demand, and water allocation at the global, regional, basin, and local levels. Properly managed water resources are a critical component of growth, poverty reduction and equity. The livelihoods of the poorest are critically associated with access to water services. A shortage of water in the future would be detrimental to the human population as it would affect everything from sanitation, to overall health and the production of grain. Freshwater use by continents is partly based on several socio-economic development factors, including population, physiography, and climatic characteristics. It is estimated that in the coming decades the most intensive growth of water withdrawal is expected to occur in Africa and South America (increasing by 1.5-1.6 times), while the smallest growth will take place in Europe and North America (1.2 times). The Commission for Sustainable Development (CSD) has reported that many countries lack adequate legislation and policies for efficient and equitable allocation and use of water resources. Progress is, however, being made with the review of national legislation and enactment of new laws and regulations. Limitations and exceptions: A common perception is that most of the available freshwater resources are visible (on the surfaces of lakes, reservoirs and rivers). However, this visible water represents only a tiny fraction of global freshwater resources, as most of it is stored in aquifers, with the largest stocks stored in solid form in the Antarctic and in Greenland's ice cap. The data on freshwater resources are based on estimates of runoff into rivers and recharge of groundwater. These estimates are based on different sources and refer to different years, so cross-country comparisons should be made with caution. Because the data are collected intermittently, they may hide significant variations in total renewable water resources from year to year. The data also fail to distinguish between seasonal and geographic variations in water availability within countries. Data for small countries and countries in arid and semiarid zones are less reliable than those for larger countries and countries with greater rainfall. Caution should also be used in comparing data on annual freshwater withdrawals, which are subject to variations in collection and estimation methods. In addition, inflows and outflows are estimated at different times and at different levels of quality and precision, requiring caution in interpreting the data, particularly for water-short countries, notably in the Middle East and North Africa. The data are based on surveys and estimates provided by governments to the Joint Monitoring Programme of the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF). The coverage rates are based on information from service users on actual household use rather than on information from service providers, which may include nonfunctioning systems. Statistical concept and methodology: Renewable water resources (internal and external) include average annual flow of rivers and recharge of aquifers generated from endogenous precipitation, and those water resources that are not generated in the country, such as inflows from upstream countries (groundwater and surface water), and part of the water of border lakes and/or rivers. Non-renewable water includes groundwater bodies (deep aquifers) that have a negligible rate of recharge on the human time-scale. While renewable water resources are expressed in flows, non-renewable water resources have to be expressed in quantity (stock). Runoff from glaciers where the mass balance is negative is considered non-renewable. Renewable internal freshwater resources per capita are calculated using the World Bank's population estimates. The unit of calculation is m3/year per inhabitant. Internal renewable freshwater resources per capita are calculated using the World Bank's population estimates. Total actual renewable water resources correspond to the maximum theoretical yearly amount of water actually available for a country at a given moment. The unit of calculation is km3/year or 109 m3/year. Calculation Criteria is [Water resources: total renewable (actual)] = [Surface water: total renewable (actual)] + [Groundwater: total renewable (actual)] - [Overlap between surface water and groundwater].* Fresh water is naturally occurring water on the Earth's surface. It is a renewable but limited natural resource. Fresh water can only be renewed through the process of the water cycle, where water from seas, lakes, forests, land, rivers, and dams evaporates, forms clouds, and returns as precipitation. However, if more fresh water is consumed through human activities than is restored by nature, the result is that the quantity of fresh water available in lakes, rivers, dams and underground waters can be reduced which can cause serious damage to the surrounding environment. * http://www.fao.org/nr/water/aquastat/data/glossary/search.html?termId=4188&submitBtn=s&cls=yes
Publisher
The World Bank
Origin
High income
Records
63
Source
High income | Renewable internal freshwater resources per capita (cubic meters)
1960
13780.47369514 1961
13601.77836323 1962
13439.4288769 1963
13281.14288166 1964
13131.71886877 1965
12992.11404639 1966
12857.56926844 1967
12730.10699431 1968
12605.55199641 1969
12483.82545204 1970
12337.61235175 1971
12213.70892671 1972
12097.06729759 1973
11985.26710475 1974
11877.82384923 1975
11780.27889379 1976
11685.59685019 1977
11591.33265341 1978
11497.19937383 1979
11405.64017848 1980
11315.81097738 1981
11232.94660694 1982
11157.28949068 1983
11086.70891088 1984
11016.1957255 1985
10943.98559375 1986
10870.81336801 1987
10796.29166595 1988
10716.76263553 1989
10638.81561192 1990
10549.67324906 1991
10409.25935052 1992
10195.93747593 1993
10125.18861946 1994
10058.62392097 1995
9993.42960021 1996
9928.29974248 1997
9866.25638804 1998
9805.37955644 1999
9746.28567657 2000
9687.54874911 2001
9628.26518892 2002
9568.96042922 2003
9508.92124077 2004
9446.39201415 2005
9375.45409278 2006
9299.39933406 2007
9221.72615053 2008
9152.66503534 2009
9094.9112513 2010
9056.24026645 2011
9006.38501757 2012
8955.100866 2013
8903.59564596 2014
8853.74172693 2015
8803.00362646 2016
8758.18959995 2017
8715.3159338 2018
8678.29115351 2019
8642.18379657 2020
2021
2022
High income | Renewable internal freshwater resources per capita (cubic meters)
Renewable internal freshwater resources flows refer to internal renewable resources (internal river flows and groundwater from rainfall) in the country. Renewable internal freshwater resources per capita are calculated using the World Bank's population estimates. Development relevance: UNESCO estimates that in developing countries in Asia, Africa and Latin America, public water withdrawal represents just 50-100 liters (13 to 26 gallons) per person per day. In regions with insufficient water resources, this figure may be as low as 20-60 (5 to 15 gallons) liters per day. People in developed countries on average consume about 10 times more water daily than those in developing countries. While some countries have an abundant supply of fresh water, others do not have as much. UN estimates that many areas of the world are already experiencing stress on water availability. Due to the accelerated pace of population growth and an increase in the amount of water a single person uses, it is expected that this situation will continue to get worse. The ability of developing countries to make more water available for domestic, agricultural, industrial and environmental uses will depend on better management of water resources and more cross-sectorial planning and integration. According to World Water Council, by 2020, water use is expected to increase by 40 percent, and 17 percent more water will be required for food production to meet the needs of the growing population. The three major factors causing increasing water demand over the past century are population growth, industrial development and the expansion of irrigated agriculture. Water productivity is an indication only of the efficiency by which each country uses its water resources. Given the different economic structure of each country, these indicators should be used carefully, taking into account a country's sectorial activities and natural resource endowments. According to Commission on Sustainable Development (CSD) agriculture accounts for more than 70 percent of freshwater drawn from lakes, rivers and underground sources. Most is used for irrigation which provides about 40 percent of the world food production. Poor management has resulted in the salinization of about 20 percent of the world's irrigated land, with an additional 1.5 million ha affected annually. There is now ample evidence that increased hydrologic variability and change in climate has and will continue to have a profound impact on the water sector through the hydrologic cycle, water availability, water demand, and water allocation at the global, regional, basin, and local levels. Properly managed water resources are a critical component of growth, poverty reduction and equity. The livelihoods of the poorest are critically associated with access to water services. A shortage of water in the future would be detrimental to the human population as it would affect everything from sanitation, to overall health and the production of grain. Freshwater use by continents is partly based on several socio-economic development factors, including population, physiography, and climatic characteristics. It is estimated that in the coming decades the most intensive growth of water withdrawal is expected to occur in Africa and South America (increasing by 1.5-1.6 times), while the smallest growth will take place in Europe and North America (1.2 times). The Commission for Sustainable Development (CSD) has reported that many countries lack adequate legislation and policies for efficient and equitable allocation and use of water resources. Progress is, however, being made with the review of national legislation and enactment of new laws and regulations. Limitations and exceptions: A common perception is that most of the available freshwater resources are visible (on the surfaces of lakes, reservoirs and rivers). However, this visible water represents only a tiny fraction of global freshwater resources, as most of it is stored in aquifers, with the largest stocks stored in solid form in the Antarctic and in Greenland's ice cap. The data on freshwater resources are based on estimates of runoff into rivers and recharge of groundwater. These estimates are based on different sources and refer to different years, so cross-country comparisons should be made with caution. Because the data are collected intermittently, they may hide significant variations in total renewable water resources from year to year. The data also fail to distinguish between seasonal and geographic variations in water availability within countries. Data for small countries and countries in arid and semiarid zones are less reliable than those for larger countries and countries with greater rainfall. Caution should also be used in comparing data on annual freshwater withdrawals, which are subject to variations in collection and estimation methods. In addition, inflows and outflows are estimated at different times and at different levels of quality and precision, requiring caution in interpreting the data, particularly for water-short countries, notably in the Middle East and North Africa. The data are based on surveys and estimates provided by governments to the Joint Monitoring Programme of the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF). The coverage rates are based on information from service users on actual household use rather than on information from service providers, which may include nonfunctioning systems. Statistical concept and methodology: Renewable water resources (internal and external) include average annual flow of rivers and recharge of aquifers generated from endogenous precipitation, and those water resources that are not generated in the country, such as inflows from upstream countries (groundwater and surface water), and part of the water of border lakes and/or rivers. Non-renewable water includes groundwater bodies (deep aquifers) that have a negligible rate of recharge on the human time-scale. While renewable water resources are expressed in flows, non-renewable water resources have to be expressed in quantity (stock). Runoff from glaciers where the mass balance is negative is considered non-renewable. Renewable internal freshwater resources per capita are calculated using the World Bank's population estimates. The unit of calculation is m3/year per inhabitant. Internal renewable freshwater resources per capita are calculated using the World Bank's population estimates. Total actual renewable water resources correspond to the maximum theoretical yearly amount of water actually available for a country at a given moment. The unit of calculation is km3/year or 109 m3/year. Calculation Criteria is [Water resources: total renewable (actual)] = [Surface water: total renewable (actual)] + [Groundwater: total renewable (actual)] - [Overlap between surface water and groundwater].* Fresh water is naturally occurring water on the Earth's surface. It is a renewable but limited natural resource. Fresh water can only be renewed through the process of the water cycle, where water from seas, lakes, forests, land, rivers, and dams evaporates, forms clouds, and returns as precipitation. However, if more fresh water is consumed through human activities than is restored by nature, the result is that the quantity of fresh water available in lakes, rivers, dams and underground waters can be reduced which can cause serious damage to the surrounding environment. * http://www.fao.org/nr/water/aquastat/data/glossary/search.html?termId=4188&submitBtn=s&cls=yes
Publisher
The World Bank
Origin
High income
Records
63
Source