IBRD only | CO2 emissions from other sectors, excluding residential buildings and commercial and public services (% of total fuel combustion)

CO2 emissions from other sectors, less residential buildings and commercial and public services, contains the emissions from commercial/institutional activities, residential, agriculture/forestry, fishing and other emissions not specified elsewhere that are included in the IPCC Source/Sink Categories 1 A 4 and 1 A 5. In the 1996 IPCC Guidelines, the category also includes emissions from autoproducers in the commercial/residential/agricultural sectors that generate electricity and/or heat. The IEA data are not collected in a way that allows the energy consumption to be split by specific end-use and therefore, autoproducers are shown as a separate item (Unallocated Autoproducers). Development relevance: Carbon dioxide (CO2) is naturally occurring gas fixed by photosynthesis into organic matter. A byproduct of fossil fuel combustion and biomass burning, it is also emitted from land use changes and other industrial processes. It is the principal anthropogenic greenhouse gas that affects the Earth's radiative balance. It is the reference gas against which other greenhouse gases are measured, thus having a Global Warming Potential of 1. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. Burning of carbon-based fuels since the industrial revolution has rapidly increased concentrations of atmospheric carbon dioxide, increasing the rate of global warming and causing anthropogenic climate change. It is also a major source of ocean acidification since it dissolves in water to form carbonic acid. The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Global emissions of carbon dioxide have risen by 99%, or on average 2.0% per year, since 1971, and are projected to rise by another 45% by 2030, or by 1.6% per year. It is estimated that emissions in China have risen by 5.7 percent per annum between 1971 and 2006 - the use of coal in China increased levels of CO2 by 4.8 billion tonnes over this period. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: As a response to the objectives of the UNFCCC, the IEA Secretariat, together with the IPCC, the OECD and umerous international experts, has helped to develop and refine an internationally-agreed methodology for the calculation and reporting of national greenhouse-gas emissions from fuel combustion. This methodology was published in 1995 in the IPCC Guidelines for National Greenhouse Gas Inventories. After the initial dissemination of the methodology, revisions were added to several chapters, and published as the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (1996 IPCC Guidelines). In April 2006, the IPCC approved the 2006 Guidelines at the 25th session of the IPCC in Mauritius. For now, most countries (as well as the IEA Secretariat) are still calculating their inventories using the 1996 IPCC Guidelines.1. Both the 1996 IPCC Guidelines and the 2006 IPCC Guidelines are available from the IPCC Greenhouse Gas Inventories Programme (www.ipcc-nggip.iges.or.jp). Since the IPCC methodology for fuel combustion is largely based on energy balances, the IEA estimates for CO2 from fuel combustion have been calculated using the IEA energy balances and the default IPCC methodology. However, other possibly more detailed methodologies may be used by Parties to calculate their inventories. This may lead to different estimates of emissions. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. Statistical concept and methodology: Carbon dioxide emissions account for the largest share of greenhouse gases, which are associated with global warming. In 2010 the International Energy Agency (IEA) released data on carbon dioxide emissions by sector for the first time, allowing a more comprehensive understanding of each sector's contribution to total emissions. The sectoral approach yields data on carbon dioxide emissions from fuel combustion (Intergovernmental Panel on Climate Change [IPCC] source/sink category 1A) as calculated using the IPCC tier 1 sectoral approach. Carbon dioxide emissions from other sectors are emissions from commercial and institutional activities and from residential, agriculture and forestry, fishing, and other processes not specified elsewhere that are included in IPCC source/sink categories 1A4 and 1A5. Although in the 1996 IPCC guidelines, this category included emissions from autoproducers in the commercial, residential, and agricultural sectors that generate electricity or heat, the IEA data do not allow energy consumption to be classified by end-use, and thus emissions from autoproducers are listed separately under unallocated autoproducers. Carbon dioxide emissions, largely by-products of energy production and use, account for the largest share of greenhouse gases, which are associated with global warming. Anthropogenic carbon dioxide emissions result primarily from fossil fuel combustion and cement manufacturing. In combustion different fossil fuels release different amounts of carbon dioxide for the same level of energy use: oil releases about 50 percent more carbon dioxide than natural gas, and coal releases about twice as much. Cement manufacturing releases about half a metric ton of carbon dioxide for each metric ton of cement produced.
Publisher
The World Bank
Origin
IBRD only
Records
63
Source
IBRD only | CO2 emissions from other sectors, excluding residential buildings and commercial and public services (% of total fuel combustion)
1960 1.66642585
1961 1.75853749
1962 1.65483604
1963 1.83125107
1964 1.82861829
1965 1.86026304
1966 1.89017187
1967 1.94267282
1968 1.99635752
1969 2.03387635
1970 2.13360985
1971 6.30693198
1972 6.2235476
1973 6.39314838
1974 6.05018762
1975 6.06539881
1976 5.87373499
1977 5.81430643
1978 5.77089037
1979 6.06118095
1980 5.64052318
1981 5.82588225
1982 5.76191311
1983 5.77720404
1984 5.70142841
1985 5.47878607
1986 5.19860311
1987 5.08803984
1988 4.90843487
1989 4.27729019
1990 4.98050345
1991 4.86413218
1992 4.35211679
1993 4.50240443
1994 4.28867105
1995 4.09306396
1996 3.39791811
1997 3.72343715
1998 3.48254015
1999 3.67539917
2000 2.9564631
2001 2.96010097
2002 2.8927757
2003 2.89782197
2004 2.91406329
2005 2.85070079
2006 2.71487334
2007 2.62748583
2008 2.59379772
2009 2.72051468
2010 2.50704472
2011 2.27547596
2012 2.38110903
2013 2.31785849
2014 2.32886395
2015
2016
2017
2018
2019
2020
2021
2022

IBRD only | CO2 emissions from other sectors, excluding residential buildings and commercial and public services (% of total fuel combustion)

CO2 emissions from other sectors, less residential buildings and commercial and public services, contains the emissions from commercial/institutional activities, residential, agriculture/forestry, fishing and other emissions not specified elsewhere that are included in the IPCC Source/Sink Categories 1 A 4 and 1 A 5. In the 1996 IPCC Guidelines, the category also includes emissions from autoproducers in the commercial/residential/agricultural sectors that generate electricity and/or heat. The IEA data are not collected in a way that allows the energy consumption to be split by specific end-use and therefore, autoproducers are shown as a separate item (Unallocated Autoproducers). Development relevance: Carbon dioxide (CO2) is naturally occurring gas fixed by photosynthesis into organic matter. A byproduct of fossil fuel combustion and biomass burning, it is also emitted from land use changes and other industrial processes. It is the principal anthropogenic greenhouse gas that affects the Earth's radiative balance. It is the reference gas against which other greenhouse gases are measured, thus having a Global Warming Potential of 1. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. Burning of carbon-based fuels since the industrial revolution has rapidly increased concentrations of atmospheric carbon dioxide, increasing the rate of global warming and causing anthropogenic climate change. It is also a major source of ocean acidification since it dissolves in water to form carbonic acid. The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Global emissions of carbon dioxide have risen by 99%, or on average 2.0% per year, since 1971, and are projected to rise by another 45% by 2030, or by 1.6% per year. It is estimated that emissions in China have risen by 5.7 percent per annum between 1971 and 2006 - the use of coal in China increased levels of CO2 by 4.8 billion tonnes over this period. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: As a response to the objectives of the UNFCCC, the IEA Secretariat, together with the IPCC, the OECD and umerous international experts, has helped to develop and refine an internationally-agreed methodology for the calculation and reporting of national greenhouse-gas emissions from fuel combustion. This methodology was published in 1995 in the IPCC Guidelines for National Greenhouse Gas Inventories. After the initial dissemination of the methodology, revisions were added to several chapters, and published as the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (1996 IPCC Guidelines). In April 2006, the IPCC approved the 2006 Guidelines at the 25th session of the IPCC in Mauritius. For now, most countries (as well as the IEA Secretariat) are still calculating their inventories using the 1996 IPCC Guidelines.1. Both the 1996 IPCC Guidelines and the 2006 IPCC Guidelines are available from the IPCC Greenhouse Gas Inventories Programme (www.ipcc-nggip.iges.or.jp). Since the IPCC methodology for fuel combustion is largely based on energy balances, the IEA estimates for CO2 from fuel combustion have been calculated using the IEA energy balances and the default IPCC methodology. However, other possibly more detailed methodologies may be used by Parties to calculate their inventories. This may lead to different estimates of emissions. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. Statistical concept and methodology: Carbon dioxide emissions account for the largest share of greenhouse gases, which are associated with global warming. In 2010 the International Energy Agency (IEA) released data on carbon dioxide emissions by sector for the first time, allowing a more comprehensive understanding of each sector's contribution to total emissions. The sectoral approach yields data on carbon dioxide emissions from fuel combustion (Intergovernmental Panel on Climate Change [IPCC] source/sink category 1A) as calculated using the IPCC tier 1 sectoral approach. Carbon dioxide emissions from other sectors are emissions from commercial and institutional activities and from residential, agriculture and forestry, fishing, and other processes not specified elsewhere that are included in IPCC source/sink categories 1A4 and 1A5. Although in the 1996 IPCC guidelines, this category included emissions from autoproducers in the commercial, residential, and agricultural sectors that generate electricity or heat, the IEA data do not allow energy consumption to be classified by end-use, and thus emissions from autoproducers are listed separately under unallocated autoproducers. Carbon dioxide emissions, largely by-products of energy production and use, account for the largest share of greenhouse gases, which are associated with global warming. Anthropogenic carbon dioxide emissions result primarily from fossil fuel combustion and cement manufacturing. In combustion different fossil fuels release different amounts of carbon dioxide for the same level of energy use: oil releases about 50 percent more carbon dioxide than natural gas, and coal releases about twice as much. Cement manufacturing releases about half a metric ton of carbon dioxide for each metric ton of cement produced.
Publisher
The World Bank
Origin
IBRD only
Records
63
Source