IBRD only | Probability of dying among adolescents ages 15-19 years (per 1,000)

Probability of dying between age 15-19 years of age expressed per 1,000 adolescents age 15, if subject to age-specific mortality rates of the specified year. Development relevance: Mortality rates for different age groups (infants, children, adolescents, youth and adults) and overall mortality indicators (life expectancy at birth or survival to a given age) are important indicators of health status in a country. Because data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. And they are among the indicators most frequently used to compare socioeconomic development across countries. Limitations and exceptions: Complete vital registration systems are fairly uncommon in developing countries. Thus estimates must be obtained from sample surveys or derived by applying indirect estimation techniques to registration, census, or survey data. Survey data are subject to recall error, and surveys estimating infant/child deaths require large samples because households in which a birth has occurred during a given year cannot ordinarily be preselected for sampling. Indirect estimates rely on model life tables that may be inappropriate for the population concerned. Extrapolations based on outdated surveys may not be reliable for monitoring changes in health status or for comparative analytical work. Statistical concept and methodology: The main sources of mortality data are vital registration systems and direct or indirect estimates based on sample surveys or censuses. A "complete" vital registration system - covering at least 90 percent of vital events in the population - is the best source of age-specific mortality data. Estimates of neonatal, infant, and child mortality tend to vary by source and method for a given time and place. Years for available estimates also vary by country, making comparisons across countries and over time difficult. To make neonatal, infant, and child mortality estimates comparable and to ensure consistency across estimates by different agencies, the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME), which comprises the United Nations Children's Fund (UNICEF), the World Health Organization (WHO), the World Bank, the United Nations Population Division, and other universities and research institutes, developed and adopted a statistical method that uses all available information to reconcile differences. The method uses statistical models to obtain a best estimate trend line by fitting a country-specific regression model of mortality rates against their reference dates.
Publisher
The World Bank
Origin
IBRD only
Records
63
Source
IBRD only | Probability of dying among adolescents ages 15-19 years (per 1,000)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
6.97592206 1990
6.78027859 1991
6.67818448 1992
6.61068737 1993
6.50782598 1994
6.39725509 1995
6.22956985 1996
6.06651577 1997
5.93809088 1998
5.87510216 1999
5.72778575 2000
5.61694064 2001
5.51037176 2002
5.37932173 2003
5.3355509 2004
5.05109145 2005
4.90788739 2006
4.83596485 2007
4.75013748 2008
4.65925007 2009
4.60534163 2010
4.51176764 2011
4.38847113 2012
4.26404592 2013
4.15097544 2014
4.02505475 2015
3.91124644 2016
3.82088404 2017
3.65055579 2018
3.5506943 2019
3.42018139 2020
3.31151694 2021
2022

IBRD only | Probability of dying among adolescents ages 15-19 years (per 1,000)

Probability of dying between age 15-19 years of age expressed per 1,000 adolescents age 15, if subject to age-specific mortality rates of the specified year. Development relevance: Mortality rates for different age groups (infants, children, adolescents, youth and adults) and overall mortality indicators (life expectancy at birth or survival to a given age) are important indicators of health status in a country. Because data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. And they are among the indicators most frequently used to compare socioeconomic development across countries. Limitations and exceptions: Complete vital registration systems are fairly uncommon in developing countries. Thus estimates must be obtained from sample surveys or derived by applying indirect estimation techniques to registration, census, or survey data. Survey data are subject to recall error, and surveys estimating infant/child deaths require large samples because households in which a birth has occurred during a given year cannot ordinarily be preselected for sampling. Indirect estimates rely on model life tables that may be inappropriate for the population concerned. Extrapolations based on outdated surveys may not be reliable for monitoring changes in health status or for comparative analytical work. Statistical concept and methodology: The main sources of mortality data are vital registration systems and direct or indirect estimates based on sample surveys or censuses. A "complete" vital registration system - covering at least 90 percent of vital events in the population - is the best source of age-specific mortality data. Estimates of neonatal, infant, and child mortality tend to vary by source and method for a given time and place. Years for available estimates also vary by country, making comparisons across countries and over time difficult. To make neonatal, infant, and child mortality estimates comparable and to ensure consistency across estimates by different agencies, the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME), which comprises the United Nations Children's Fund (UNICEF), the World Health Organization (WHO), the World Bank, the United Nations Population Division, and other universities and research institutes, developed and adopted a statistical method that uses all available information to reconcile differences. The method uses statistical models to obtain a best estimate trend line by fitting a country-specific regression model of mortality rates against their reference dates.
Publisher
The World Bank
Origin
IBRD only
Records
63
Source