Iraq | Annual freshwater withdrawals, total (% of internal resources)

Annual freshwater withdrawals refer to total water withdrawals, not counting evaporation losses from storage basins. Withdrawals also include water from desalination plants in countries where they are a significant source. Withdrawals can exceed 100 percent of total renewable resources where extraction from nonrenewable aquifers or desalination plants is considerable or where there is significant water reuse. Withdrawals for agriculture and industry are total withdrawals for irrigation and livestock production and for direct industrial use (including withdrawals for cooling thermoelectric plants). Withdrawals for domestic uses include drinking water, municipal use or supply, and use for public services, commercial establishments, and homes. Data are for the most recent year available for 1987-2002. Development relevance: While some countries have an abundant supply of fresh water, others do not have as much. UN estimates that many areas of the world are already experiencing stress on water availability. Due to the accelerated pace of population growth and an increase in the amount of water a single person uses, it is expected that this situation will continue to get worse. The ability of developing countries to make more water available for domestic, agricultural, industrial and environmental uses will depend on better management of water resources and more cross-sectorial planning and integration. According to World Water Council, by 2020, water use is expected to increase by 40 percent, and 17 percent more water will be required for food production to meet the needs of the growing population. The three major factors causing increasing water demand over the past century are population growth, industrial development and the expansion of irrigated agriculture. There is now ample evidence that increased hydrologic variability and change in climate has and will continue to have a profound impact on the water sector through the hydrologic cycle, water availability, water demand, and water allocation at the global, regional, basin, and local levels. Properly managed water resources are a critical component of growth, poverty reduction and equity. The livelihoods of the poorest are critically associated with access to water services. A shortage of water in the future would be detrimental to the human population as it would affect everything from sanitation, to overall health and the production of grain. Freshwater use by continents is partly based on several socio-economic development factors, including population, physiography, and climatic characteristics. It is estimated that in the coming decades the most intensive growth of water withdrawal is expected to occur in Africa and South America (increasing by 1.5-1.6 times), while the smallest growth will take place in Europe and North America (1.2 times). Limitations and exceptions: A common perception is that most of the available freshwater resources are visible (on the surfaces of lakes, reservoirs and rivers). However, this visible water represents only a tiny fraction of global freshwater resources, as most of it is stored in aquifers, with the largest stocks stored in solid form in the Antarctic and in Greenland's ice cap. The data on freshwater resources are based on estimates of runoff into rivers and recharge of groundwater. These estimates are based on different sources and refer to different years, so cross-country comparisons should be made with caution. Because the data are collected intermittently, they may hide significant variations in total renewable water resources from year to year. The data also fail to distinguish between seasonal and geographic variations in water availability within countries. Data for small countries and countries in arid and semiarid zones are less reliable than those for larger countries and countries with greater rainfall. Caution should also be used in comparing data on annual freshwater withdrawals, which are subject to variations in collection and estimation methods. In addition, inflows and outflows are estimated at different times and at different levels of quality and precision, requiring caution in interpreting the data, particularly for water-short countries, notably in the Middle East and North Africa. The data are based on surveys and estimates provided by governments to the Joint Monitoring Programme of the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF). The coverage rates are based on information from service users on actual household use rather than on information from service providers, which may include nonfunctioning systems. Statistical concept and methodology: Annual freshwater withdrawals are total water withdrawals, not counting evaporation losses from storage basins. Withdrawals also include water from desalination plants in countries where they are a significant source. Withdrawals can exceed 100 percent of total renewable resources where extraction from nonrenewable aquifers or desalination plants is considerable or where water reuse is significant. Withdrawals for agriculture and industry are total withdrawals for irrigation and livestock production and for direct industrial use (including for cooling thermoelectric plants). Withdrawals for domestic uses include drinking water, municipal use or supply, and use for public services, commercial establishments, and homes.
Publisher
The World Bank
Origin
Republic of Iraq
Records
63
Source
Iraq | Annual freshwater withdrawals, total (% of internal resources)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975 115.22727273
1976 115.36079545
1977 115.49431818
1978 115.62784091
1979 115.76136364
1980 115.89488636
1981 116.02272727
1982 116.15056818
1983 116.27840909
1984 116.40625
1985 116.53409091
1986 117.54545455
1987 118.55681818
1988 119.56818182
1989 120.57954545
1990 121.59090909
1991 128.18181818
1992 134.77272727
1993 141.36363636
1994 147.95454545
1995 154.54545455
1996 161.13636364
1997 167.70625
1998 174.29715909
1999 180.88806818
2000 187.47897727
2001 182.20206981
2002 176.92516234
2003 171.64825487
2004 166.3713474
2005 161.09443993
2006 155.81753247
2007 150.540625
2008 145.26371753
2009 139.98681007
2010 134.7099026
2011 129.43299513
2012 124.14188312
2013 118.86497565
2014 113.58806818
2015 99.15909091
2016 109.40340909
2017 122.33806818
2018 95.35227273
2019 160.83522727
2020 160.83522727
2021
2022

Iraq | Annual freshwater withdrawals, total (% of internal resources)

Annual freshwater withdrawals refer to total water withdrawals, not counting evaporation losses from storage basins. Withdrawals also include water from desalination plants in countries where they are a significant source. Withdrawals can exceed 100 percent of total renewable resources where extraction from nonrenewable aquifers or desalination plants is considerable or where there is significant water reuse. Withdrawals for agriculture and industry are total withdrawals for irrigation and livestock production and for direct industrial use (including withdrawals for cooling thermoelectric plants). Withdrawals for domestic uses include drinking water, municipal use or supply, and use for public services, commercial establishments, and homes. Data are for the most recent year available for 1987-2002. Development relevance: While some countries have an abundant supply of fresh water, others do not have as much. UN estimates that many areas of the world are already experiencing stress on water availability. Due to the accelerated pace of population growth and an increase in the amount of water a single person uses, it is expected that this situation will continue to get worse. The ability of developing countries to make more water available for domestic, agricultural, industrial and environmental uses will depend on better management of water resources and more cross-sectorial planning and integration. According to World Water Council, by 2020, water use is expected to increase by 40 percent, and 17 percent more water will be required for food production to meet the needs of the growing population. The three major factors causing increasing water demand over the past century are population growth, industrial development and the expansion of irrigated agriculture. There is now ample evidence that increased hydrologic variability and change in climate has and will continue to have a profound impact on the water sector through the hydrologic cycle, water availability, water demand, and water allocation at the global, regional, basin, and local levels. Properly managed water resources are a critical component of growth, poverty reduction and equity. The livelihoods of the poorest are critically associated with access to water services. A shortage of water in the future would be detrimental to the human population as it would affect everything from sanitation, to overall health and the production of grain. Freshwater use by continents is partly based on several socio-economic development factors, including population, physiography, and climatic characteristics. It is estimated that in the coming decades the most intensive growth of water withdrawal is expected to occur in Africa and South America (increasing by 1.5-1.6 times), while the smallest growth will take place in Europe and North America (1.2 times). Limitations and exceptions: A common perception is that most of the available freshwater resources are visible (on the surfaces of lakes, reservoirs and rivers). However, this visible water represents only a tiny fraction of global freshwater resources, as most of it is stored in aquifers, with the largest stocks stored in solid form in the Antarctic and in Greenland's ice cap. The data on freshwater resources are based on estimates of runoff into rivers and recharge of groundwater. These estimates are based on different sources and refer to different years, so cross-country comparisons should be made with caution. Because the data are collected intermittently, they may hide significant variations in total renewable water resources from year to year. The data also fail to distinguish between seasonal and geographic variations in water availability within countries. Data for small countries and countries in arid and semiarid zones are less reliable than those for larger countries and countries with greater rainfall. Caution should also be used in comparing data on annual freshwater withdrawals, which are subject to variations in collection and estimation methods. In addition, inflows and outflows are estimated at different times and at different levels of quality and precision, requiring caution in interpreting the data, particularly for water-short countries, notably in the Middle East and North Africa. The data are based on surveys and estimates provided by governments to the Joint Monitoring Programme of the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF). The coverage rates are based on information from service users on actual household use rather than on information from service providers, which may include nonfunctioning systems. Statistical concept and methodology: Annual freshwater withdrawals are total water withdrawals, not counting evaporation losses from storage basins. Withdrawals also include water from desalination plants in countries where they are a significant source. Withdrawals can exceed 100 percent of total renewable resources where extraction from nonrenewable aquifers or desalination plants is considerable or where water reuse is significant. Withdrawals for agriculture and industry are total withdrawals for irrigation and livestock production and for direct industrial use (including for cooling thermoelectric plants). Withdrawals for domestic uses include drinking water, municipal use or supply, and use for public services, commercial establishments, and homes.
Publisher
The World Bank
Origin
Republic of Iraq
Records
63
Source