Iraq | Level of water stress: freshwater withdrawal as a proportion of available freshwater resources
The level of water stress: freshwater withdrawal as a proportion of available freshwater resources is the ratio between total freshwater withdrawn by all major sectors and total renewable freshwater resources, after taking into account environmental water requirements. Main sectors, as defined by ISIC standards, include agriculture; forestry and fishing; manufacturing; electricity industry; and services. This indicator is also known as water withdrawal intensity. Development relevance: The level of water stress can show the degree to which water resources are being exploited to meet the country's water demand. It measures a country's pressure on its water resources and therefore the challenge on the sustainability of its water use. It tracks progress in regard to “withdrawals and supply of freshwater to address water scarcity”, i.e. the environmental component of target 6.4. It also shows to what extent water resources are already used, and signals the importance of effective supply and demand management policies. It indicates the likelihood of increasing competition and conflict between different water uses and users in a situation of increasing water scarcity. Increased water stress, shown by an increase in the value of the indicator, has potentially negative effects on the sustainability of the natural resources and on economic development. On the other hand, low values of water stress indicate that water does not represent a particular challenge for economic development and sustainability. Limitations and exceptions: Water withdrawal as a percentage of water resources is a good indicator of pressure on limited water resources, one of the most important natural resources. However, it only partially addresses the issues related to sustainable water management. Supplementary indicators that capture the multiple dimensions of water management would combine data on water demand management, behavioural changes with regard to water use and the availability of appropriate infrastructure, and measure progress in increasing the efficiency and sustainability of water use, in particular in relation to population and economic growth. They would also recognize the different climatic environments that affect water use in countries, in particular in agriculture, which is the main user of water. Sustainability assessment is also linked to the critical thresholds fixed for this indicator and there is no universal consensus on such threshold. Trends in water withdrawal show relatively slow patterns of change. Usually, three-five years are a minimum frequency to be able to detect significant changes, as it is unlikely that the indicator would show meaningful variations from one year to the other. Estimation of water withdrawal by sector is the main limitation to the computation of the indicator. Few countries actually publish water use data on a regular basis by sector. Renewable water resources include all surface water and groundwater resources that are available on a yearly basis without consideration of the capacity to harvest and use this resource. Exploitable water resources, which refer to the volume of surface water or groundwater that is available with an occurrence of 90% of the time, are considerably less than renewable water resources, but no universal method exists to assess such exploitable water resources. There is no universally agreed method for the computation of incoming freshwater flows originating outside of a country's borders. Nor is there any standard method to account for return flows, the part of the water withdrawn from its source and which flows back to the river system after use. In countries where return flow represents a substantial part of water withdrawal, the indicator tends to underestimate available water and therefore overestimate the level of water stress. Other limitations that affect the interpretation of the water stress indicator include: difficulty to obtain accurate, complete and up-to-date data; potentially large variation of sub-national data; lack of account of seasonal variations in water resources; lack of consideration to the distribution among water uses; lack of consideration of water quality and its suitability for use; and the indicator can be higher than 100 per cent when water withdrawal includes secondary freshwater (water withdrawn previously and returned to the system), non-renewable water (fossil groundwater), when annual groundwater withdrawal is higher than annual replenishment (over-abstraction) or when water withdrawal includes part or all of the water set aside for environmental water requirements. Some of these issues can be solved through disaggregation of the index at the level of hydrological units and by distinguishing between different use sectors. However, due to the complexity of water flows, both within a country and between countries, care should be taken not to double-count. Statistical concept and methodology: Proportion of total renewable water resources withdrawn is the total volume of groundwater and surface water withdrawn from their sources for human use (in the agricultural, municipal and industrial sectors), expressed as a percentage of the total actual renewable water resources. The terms water resources and water withdrawal are understood as freshwater resources and freshwater withdrawal. Water withdrawal is estimated for the following three main sectors: agriculture, municipalities (including domestic water withdrawal) and industries, at country level and expressed in km3/year. The total actual renewable water resources for a country or region are defined as the sum of internal renewable water resources and the external renewable water resources, also expressed in km3/year. The indicator is computed by dividing total water withdrawal by total actual renewable water resources minus environmental requirements and expressed in percentage points. Total freshwater withdrawal is the volume of freshwater extracted from its source (rivers, lakes, aquifers) for agriculture, industries and municipalities. It is estimated at the country level for the following three main sectors: agriculture, municipalities (including domestic water withdrawal) and industries. Freshwater withdrawal includes primary freshwater (not withdrawn before), secondary freshwater (previously withdrawn and returned to rivers and groundwater, such as discharged wastewater and agricultural drainage water) and fossil groundwater. It does not include non-conventional water, i.e. direct use of treated wastewater, direct use of agricultural drainage water and desalinated water. Total freshwater withdrawal is in general calculated as being the sum of total water withdrawal by sector minus direct use of wastewater, direct use of agricultural drainage water and use of desalinated water. Total renewable freshwater resources are expressed as the sum of internal and external renewable water resources. The terms “water resources” and “water withdrawal” are understood here as freshwater resources and freshwater withdrawal. Internal renewable water resources are defined as the long-term average annual flow of rivers and recharge of groundwater for a given country generated from endogenous precipitation. External renewable water resources refer to the flows of water entering the country, taking into consideration the quantity of flows reserved to upstream and downstream countries through agreements or treaties. Environmental water requirements (Env.) are the quantities of water required to sustain freshwater and estuarine ecosystems. Water quality and also the resulting ecosystem services are excluded from this formulation which is confined to water volumes. This does not imply that quality and the support to societies which are dependent on environmental flows are not important and should not be taken care of. Methods of computation of Env. are extremely variable and range from global estimates to comprehensive assessments for river reaches. Water volumes can be expressed in the same units as the total freshwater withdrawal, and then as percentages of the available water resources.
Publisher
The World Bank
Origin
Republic of Iraq
Records
63
Source
Iraq | Level of water stress: freshwater withdrawal as a proportion of available freshwater resources
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
56.96629213 1975
57.03230337 1976
57.09831461 1977
57.16432584 1978
57.23033708 1979
57.29634831 1980
57.35955056 1981
57.42275281 1982
57.48595506 1983
57.5491573 1984
57.61235955 1985
58.11235955 1986
58.61235955 1987
59.11235955 1988
59.61235955 1989
60.11235955 1990
63.37078652 1991
66.62921348 1992
69.88764045 1993
73.14606742 1994
76.40449438 1995
79.66292135 1996
82.91095506 1997
86.16938202 1998
89.42780899 1999
92.68623596 2000
90.07742777 2001
87.46861958 2002
84.8598114 2003
82.25100321 2004
79.64219502 2005
77.03338684 2006
74.42457865 2007
71.81577047 2008
69.20696228 2009
66.59815409 2010
63.98934591 2011
61.37351525 2012
58.76470706 2013
56.15589888 2014
49.02247191 2015
54.08707865 2016
60.48174157 2017
47.14044944 2018
79.51404494 2019
79.51404494 2020
2021
2022
Iraq | Level of water stress: freshwater withdrawal as a proportion of available freshwater resources
The level of water stress: freshwater withdrawal as a proportion of available freshwater resources is the ratio between total freshwater withdrawn by all major sectors and total renewable freshwater resources, after taking into account environmental water requirements. Main sectors, as defined by ISIC standards, include agriculture; forestry and fishing; manufacturing; electricity industry; and services. This indicator is also known as water withdrawal intensity. Development relevance: The level of water stress can show the degree to which water resources are being exploited to meet the country's water demand. It measures a country's pressure on its water resources and therefore the challenge on the sustainability of its water use. It tracks progress in regard to “withdrawals and supply of freshwater to address water scarcity”, i.e. the environmental component of target 6.4. It also shows to what extent water resources are already used, and signals the importance of effective supply and demand management policies. It indicates the likelihood of increasing competition and conflict between different water uses and users in a situation of increasing water scarcity. Increased water stress, shown by an increase in the value of the indicator, has potentially negative effects on the sustainability of the natural resources and on economic development. On the other hand, low values of water stress indicate that water does not represent a particular challenge for economic development and sustainability. Limitations and exceptions: Water withdrawal as a percentage of water resources is a good indicator of pressure on limited water resources, one of the most important natural resources. However, it only partially addresses the issues related to sustainable water management. Supplementary indicators that capture the multiple dimensions of water management would combine data on water demand management, behavioural changes with regard to water use and the availability of appropriate infrastructure, and measure progress in increasing the efficiency and sustainability of water use, in particular in relation to population and economic growth. They would also recognize the different climatic environments that affect water use in countries, in particular in agriculture, which is the main user of water. Sustainability assessment is also linked to the critical thresholds fixed for this indicator and there is no universal consensus on such threshold. Trends in water withdrawal show relatively slow patterns of change. Usually, three-five years are a minimum frequency to be able to detect significant changes, as it is unlikely that the indicator would show meaningful variations from one year to the other. Estimation of water withdrawal by sector is the main limitation to the computation of the indicator. Few countries actually publish water use data on a regular basis by sector. Renewable water resources include all surface water and groundwater resources that are available on a yearly basis without consideration of the capacity to harvest and use this resource. Exploitable water resources, which refer to the volume of surface water or groundwater that is available with an occurrence of 90% of the time, are considerably less than renewable water resources, but no universal method exists to assess such exploitable water resources. There is no universally agreed method for the computation of incoming freshwater flows originating outside of a country's borders. Nor is there any standard method to account for return flows, the part of the water withdrawn from its source and which flows back to the river system after use. In countries where return flow represents a substantial part of water withdrawal, the indicator tends to underestimate available water and therefore overestimate the level of water stress. Other limitations that affect the interpretation of the water stress indicator include: difficulty to obtain accurate, complete and up-to-date data; potentially large variation of sub-national data; lack of account of seasonal variations in water resources; lack of consideration to the distribution among water uses; lack of consideration of water quality and its suitability for use; and the indicator can be higher than 100 per cent when water withdrawal includes secondary freshwater (water withdrawn previously and returned to the system), non-renewable water (fossil groundwater), when annual groundwater withdrawal is higher than annual replenishment (over-abstraction) or when water withdrawal includes part or all of the water set aside for environmental water requirements. Some of these issues can be solved through disaggregation of the index at the level of hydrological units and by distinguishing between different use sectors. However, due to the complexity of water flows, both within a country and between countries, care should be taken not to double-count. Statistical concept and methodology: Proportion of total renewable water resources withdrawn is the total volume of groundwater and surface water withdrawn from their sources for human use (in the agricultural, municipal and industrial sectors), expressed as a percentage of the total actual renewable water resources. The terms water resources and water withdrawal are understood as freshwater resources and freshwater withdrawal. Water withdrawal is estimated for the following three main sectors: agriculture, municipalities (including domestic water withdrawal) and industries, at country level and expressed in km3/year. The total actual renewable water resources for a country or region are defined as the sum of internal renewable water resources and the external renewable water resources, also expressed in km3/year. The indicator is computed by dividing total water withdrawal by total actual renewable water resources minus environmental requirements and expressed in percentage points. Total freshwater withdrawal is the volume of freshwater extracted from its source (rivers, lakes, aquifers) for agriculture, industries and municipalities. It is estimated at the country level for the following three main sectors: agriculture, municipalities (including domestic water withdrawal) and industries. Freshwater withdrawal includes primary freshwater (not withdrawn before), secondary freshwater (previously withdrawn and returned to rivers and groundwater, such as discharged wastewater and agricultural drainage water) and fossil groundwater. It does not include non-conventional water, i.e. direct use of treated wastewater, direct use of agricultural drainage water and desalinated water. Total freshwater withdrawal is in general calculated as being the sum of total water withdrawal by sector minus direct use of wastewater, direct use of agricultural drainage water and use of desalinated water. Total renewable freshwater resources are expressed as the sum of internal and external renewable water resources. The terms “water resources” and “water withdrawal” are understood here as freshwater resources and freshwater withdrawal. Internal renewable water resources are defined as the long-term average annual flow of rivers and recharge of groundwater for a given country generated from endogenous precipitation. External renewable water resources refer to the flows of water entering the country, taking into consideration the quantity of flows reserved to upstream and downstream countries through agreements or treaties. Environmental water requirements (Env.) are the quantities of water required to sustain freshwater and estuarine ecosystems. Water quality and also the resulting ecosystem services are excluded from this formulation which is confined to water volumes. This does not imply that quality and the support to societies which are dependent on environmental flows are not important and should not be taken care of. Methods of computation of Env. are extremely variable and range from global estimates to comprehensive assessments for river reaches. Water volumes can be expressed in the same units as the total freshwater withdrawal, and then as percentages of the available water resources.
Publisher
The World Bank
Origin
Republic of Iraq
Records
63
Source