Kyrgyz Republic | Other greenhouse gas emissions, HFC, PFC and SF6 (thousand metric tons of CO2 equivalent)
Other greenhouse gas emissions are by-product emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC). Statistical concept and methodology: Other greenhouse gas emissions are by-product emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride (F-gases (c-C4F8 GWP=8700, C2F6 GWP=9200, C3F8 GWP=7000, C4F10 GWP=7000, C5F12 GWP=7500, C6F14 GWP=7400, C7F16 GWP=7820, CF4 GWP=6500, HFC-125 GWP=2800, HFC-134a GWP=1300, HFC-143a GWP=3800, HFC-152a GWP=140, HFC-227ea GWP=2900, HFC-23 GWP=11700, HFC-236fa GWP=6300, HFC-245fa GWP=858, HFC-32 GWP=650, HFC-365mfc GWP=804, HFC-43-10-mee GWP=1300, SF6 GWP=23900). Derived as residuals from total GHG emissions, CO2 emissions, CH4 emissions, and N2O emissions in kt of CO equivalent. Other greenhouse gases covered under the Kyoto Protocol are hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. Although emissions of these artificial gases are small, they are more powerful greenhouse gases than carbon dioxide, with much higher atmospheric lifetimes and high global warming potential. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.
Publisher
The World Bank
Origin
Kyrgyz Republic
Records
63
Source
Kyrgyz Republic | Other greenhouse gas emissions, HFC, PFC and SF6 (thousand metric tons of CO2 equivalent)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
-6563.71720469 1970
-6546.82592021 1971
-6554.67338906 1972
-7084.69435557 1973
-7500.99569123 1974
-9087.79634064 1975
-9660.30410898 1976
-10374.01151104 1977
-11659.73786652 1978
-12408.07022736 1979
-12644.82707551 1980
-13576.66521709 1981
-13833.97039531 1982
-14295.47854523 1983
-14453.74554912 1984
-13963.80921885 1985
-13542.21971426 1986
-14929.55276357 1987
-13399.22143301 1988
-14288.6697167 1989
-828.01654053 1990
-774.77319336 1991
-61.67584229 1992
-37.61102295 1993
-56.65151978 1994
-17.66693115 1995
-12.29855347 1996
-14.62020874 1997
-1.13031006 1998
0.85951233 1999
9.44866943 2000
45.27005005 2001
53.35827637 2002
65.35806274 2003
84.90740967 2004
1261.7244873 2005
1438.48300934 2006
1624.52539063 2007
2280.43728638 2008
2826.15873718 2009
1568.95263672 2010
2612.76708984 2011
2941.83520508 2012
2574.81625366 2013
3243.13952637 2014
3669.4074707 2015
2918.21575928 2016
2017
2018
2019
2020
2021
2022
Kyrgyz Republic | Other greenhouse gas emissions, HFC, PFC and SF6 (thousand metric tons of CO2 equivalent)
Other greenhouse gas emissions are by-product emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC). Statistical concept and methodology: Other greenhouse gas emissions are by-product emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride (F-gases (c-C4F8 GWP=8700, C2F6 GWP=9200, C3F8 GWP=7000, C4F10 GWP=7000, C5F12 GWP=7500, C6F14 GWP=7400, C7F16 GWP=7820, CF4 GWP=6500, HFC-125 GWP=2800, HFC-134a GWP=1300, HFC-143a GWP=3800, HFC-152a GWP=140, HFC-227ea GWP=2900, HFC-23 GWP=11700, HFC-236fa GWP=6300, HFC-245fa GWP=858, HFC-32 GWP=650, HFC-365mfc GWP=804, HFC-43-10-mee GWP=1300, SF6 GWP=23900). Derived as residuals from total GHG emissions, CO2 emissions, CH4 emissions, and N2O emissions in kt of CO equivalent. Other greenhouse gases covered under the Kyoto Protocol are hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. Although emissions of these artificial gases are small, they are more powerful greenhouse gases than carbon dioxide, with much higher atmospheric lifetimes and high global warming potential. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.
Publisher
The World Bank
Origin
Kyrgyz Republic
Records
63
Source