Least developed countries: UN classification | Probability of dying among adolescents ages 10-14 years (per 1,000)

Probability of dying between age 10-14 years of age expressed per 1,000 adolescents age 10, if subject to age-specific mortality rates of the specified year. Development relevance: Mortality rates for different age groups (infants, children, adolescents, youth and adults) and overall mortality indicators (life expectancy at birth or survival to a given age) are important indicators of health status in a country. Because data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. And they are among the indicators most frequently used to compare socioeconomic development across countries. Limitations and exceptions: Complete vital registration systems are fairly uncommon in developing countries. Thus estimates must be obtained from sample surveys or derived by applying indirect estimation techniques to registration, census, or survey data. Survey data are subject to recall error, and surveys estimating infant/child deaths require large samples because households in which a birth has occurred during a given year cannot ordinarily be preselected for sampling. Indirect estimates rely on model life tables that may be inappropriate for the population concerned. Extrapolations based on outdated surveys may not be reliable for monitoring changes in health status or for comparative analytical work. Statistical concept and methodology: The main sources of mortality data are vital registration systems and direct or indirect estimates based on sample surveys or censuses. A "complete" vital registration system - covering at least 90 percent of vital events in the population - is the best source of age-specific mortality data. Estimates of neonatal, infant, and child mortality tend to vary by source and method for a given time and place. Years for available estimates also vary by country, making comparisons across countries and over time difficult. To make neonatal, infant, and child mortality estimates comparable and to ensure consistency across estimates by different agencies, the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME), which comprises the United Nations Children's Fund (UNICEF), the World Health Organization (WHO), the World Bank, the United Nations Population Division, and other universities and research institutes, developed and adopted a statistical method that uses all available information to reconcile differences. The method uses statistical models to obtain a best estimate trend line by fitting a country-specific regression model of mortality rates against their reference dates.
Publisher
The World Bank
Origin
Least developed countries: UN classification
Records
63
Source
Least developed countries: UN classification | Probability of dying among adolescents ages 10-14 years (per 1,000)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990 11.05015258
1991 11.88934685
1992 10.68875995
1993 10.73653442
1994 11.86265721
1995 9.97953864
1996 9.73197316
1997 9.42093626
1998 9.083045
1999 8.67328801
2000 8.35023101
2001 8.07869196
2002 7.83644249
2003 7.64841496
2004 7.50156799
2005 7.31798495
2006 7.14051782
2007 6.95245805
2008 7.30397074
2009 6.52992635
2010 6.71900775
2011 6.11825893
2012 5.89823331
2013 5.71539554
2014 5.56825698
2015 5.50650441
2016 5.35238299
2017 5.25202343
2018 5.19809202
2019 5.11690471
2020 5.0265638
2021 4.968427
2022

Least developed countries: UN classification | Probability of dying among adolescents ages 10-14 years (per 1,000)

Probability of dying between age 10-14 years of age expressed per 1,000 adolescents age 10, if subject to age-specific mortality rates of the specified year. Development relevance: Mortality rates for different age groups (infants, children, adolescents, youth and adults) and overall mortality indicators (life expectancy at birth or survival to a given age) are important indicators of health status in a country. Because data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. And they are among the indicators most frequently used to compare socioeconomic development across countries. Limitations and exceptions: Complete vital registration systems are fairly uncommon in developing countries. Thus estimates must be obtained from sample surveys or derived by applying indirect estimation techniques to registration, census, or survey data. Survey data are subject to recall error, and surveys estimating infant/child deaths require large samples because households in which a birth has occurred during a given year cannot ordinarily be preselected for sampling. Indirect estimates rely on model life tables that may be inappropriate for the population concerned. Extrapolations based on outdated surveys may not be reliable for monitoring changes in health status or for comparative analytical work. Statistical concept and methodology: The main sources of mortality data are vital registration systems and direct or indirect estimates based on sample surveys or censuses. A "complete" vital registration system - covering at least 90 percent of vital events in the population - is the best source of age-specific mortality data. Estimates of neonatal, infant, and child mortality tend to vary by source and method for a given time and place. Years for available estimates also vary by country, making comparisons across countries and over time difficult. To make neonatal, infant, and child mortality estimates comparable and to ensure consistency across estimates by different agencies, the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME), which comprises the United Nations Children's Fund (UNICEF), the World Health Organization (WHO), the World Bank, the United Nations Population Division, and other universities and research institutes, developed and adopted a statistical method that uses all available information to reconcile differences. The method uses statistical models to obtain a best estimate trend line by fitting a country-specific regression model of mortality rates against their reference dates.
Publisher
The World Bank
Origin
Least developed countries: UN classification
Records
63
Source