Least developed countries: UN classification | Probability of dying among adolescents ages 15-19 years (per 1,000)

Probability of dying between age 15-19 years of age expressed per 1,000 adolescents age 15, if subject to age-specific mortality rates of the specified year. Development relevance: Mortality rates for different age groups (infants, children, adolescents, youth and adults) and overall mortality indicators (life expectancy at birth or survival to a given age) are important indicators of health status in a country. Because data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. And they are among the indicators most frequently used to compare socioeconomic development across countries. Limitations and exceptions: Complete vital registration systems are fairly uncommon in developing countries. Thus estimates must be obtained from sample surveys or derived by applying indirect estimation techniques to registration, census, or survey data. Survey data are subject to recall error, and surveys estimating infant/child deaths require large samples because households in which a birth has occurred during a given year cannot ordinarily be preselected for sampling. Indirect estimates rely on model life tables that may be inappropriate for the population concerned. Extrapolations based on outdated surveys may not be reliable for monitoring changes in health status or for comparative analytical work. Statistical concept and methodology: The main sources of mortality data are vital registration systems and direct or indirect estimates based on sample surveys or censuses. A "complete" vital registration system - covering at least 90 percent of vital events in the population - is the best source of age-specific mortality data. Estimates of neonatal, infant, and child mortality tend to vary by source and method for a given time and place. Years for available estimates also vary by country, making comparisons across countries and over time difficult. To make neonatal, infant, and child mortality estimates comparable and to ensure consistency across estimates by different agencies, the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME), which comprises the United Nations Children's Fund (UNICEF), the World Health Organization (WHO), the World Bank, the United Nations Population Division, and other universities and research institutes, developed and adopted a statistical method that uses all available information to reconcile differences. The method uses statistical models to obtain a best estimate trend line by fitting a country-specific regression model of mortality rates against their reference dates.
Publisher
The World Bank
Origin
Least developed countries: UN classification
Records
63
Source
Least developed countries: UN classification | Probability of dying among adolescents ages 15-19 years (per 1,000)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990 16.90292035
1991 17.16069602
1992 16.5070041
1993 16.71857573
1994 20.52733217
1995 16.1739046
1996 16.00901928
1997 15.33611749
1998 14.65431376
1999 14.18521353
2000 13.47986368
2001 13.04264502
2002 12.73030688
2003 12.42116669
2004 12.15105491
2005 11.85641531
2006 11.58977521
2007 11.33452093
2008 11.51056341
2009 10.80335016
2010 10.96854273
2011 10.40074901
2012 10.29479856
2013 10.26046939
2014 10.2775103
2015 10.3446391
2016 10.22222334
2017 10.0539851
2018 9.89318203
2019 9.53781099
2020 9.10298582
2021 8.81539362
2022

Least developed countries: UN classification | Probability of dying among adolescents ages 15-19 years (per 1,000)

Probability of dying between age 15-19 years of age expressed per 1,000 adolescents age 15, if subject to age-specific mortality rates of the specified year. Development relevance: Mortality rates for different age groups (infants, children, adolescents, youth and adults) and overall mortality indicators (life expectancy at birth or survival to a given age) are important indicators of health status in a country. Because data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. And they are among the indicators most frequently used to compare socioeconomic development across countries. Limitations and exceptions: Complete vital registration systems are fairly uncommon in developing countries. Thus estimates must be obtained from sample surveys or derived by applying indirect estimation techniques to registration, census, or survey data. Survey data are subject to recall error, and surveys estimating infant/child deaths require large samples because households in which a birth has occurred during a given year cannot ordinarily be preselected for sampling. Indirect estimates rely on model life tables that may be inappropriate for the population concerned. Extrapolations based on outdated surveys may not be reliable for monitoring changes in health status or for comparative analytical work. Statistical concept and methodology: The main sources of mortality data are vital registration systems and direct or indirect estimates based on sample surveys or censuses. A "complete" vital registration system - covering at least 90 percent of vital events in the population - is the best source of age-specific mortality data. Estimates of neonatal, infant, and child mortality tend to vary by source and method for a given time and place. Years for available estimates also vary by country, making comparisons across countries and over time difficult. To make neonatal, infant, and child mortality estimates comparable and to ensure consistency across estimates by different agencies, the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME), which comprises the United Nations Children's Fund (UNICEF), the World Health Organization (WHO), the World Bank, the United Nations Population Division, and other universities and research institutes, developed and adopted a statistical method that uses all available information to reconcile differences. The method uses statistical models to obtain a best estimate trend line by fitting a country-specific regression model of mortality rates against their reference dates.
Publisher
The World Bank
Origin
Least developed countries: UN classification
Records
63
Source