Maldives | Methane emissions (kt of CO2 equivalent)

Methane emissions are those stemming from human activities such as agriculture and from industrial methane production. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: This series excludes Land-use Change & Forestry (LUCF). The world data includes international bunker fuel-related emissions and emissions from territories not part of the United Nations Framework Convention on Climate Change (UNFCCC). Statistical concept and methodology: Methane emissions are those stemming from human activities such as agriculture and from industrial methane production. Expressed in CO2 equivalent using the GWP100 metric of the Second Assessment Report of IPCC and include CH4 (GWP100=21). The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared. A kilogram of methane is 21 times as effective at trapping heat in the earth's atmosphere as a kilogram of carbon dioxide within 100 years.
Publisher
The World Bank
Origin
Republic of Maldives
Records
63
Source
Maldives | Methane emissions (kt of CO2 equivalent)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990 42.616712
1991 44.241505
1992 45.866297
1993 47.49109
1994 49.115883
1995 50.740675
1996 52.462663
1997 54.187151
1998 55.909138
1999 57.631126
2000 59.353114
2001 61.599695
2002 63.846275
2003 66.092856
2004 68.339437
2005 70.586018
2006 74.442077
2007 78.298136
2008 82.154195
2009 86.010254
2010 89.866313
2011 94.781521
2012 99.69673
2013 104.611938
2014 109.527146
2015 114.442355
2016 119.086928
2017 123.731501
2018 128.376074
2019 133.020647
2020 137.66522
2021
2022

Maldives | Methane emissions (kt of CO2 equivalent)

Methane emissions are those stemming from human activities such as agriculture and from industrial methane production. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: This series excludes Land-use Change & Forestry (LUCF). The world data includes international bunker fuel-related emissions and emissions from territories not part of the United Nations Framework Convention on Climate Change (UNFCCC). Statistical concept and methodology: Methane emissions are those stemming from human activities such as agriculture and from industrial methane production. Expressed in CO2 equivalent using the GWP100 metric of the Second Assessment Report of IPCC and include CH4 (GWP100=21). The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared. A kilogram of methane is 21 times as effective at trapping heat in the earth's atmosphere as a kilogram of carbon dioxide within 100 years.
Publisher
The World Bank
Origin
Republic of Maldives
Records
63
Source