Myanmar | Nitrous oxide emissions in energy sector (% of total)
Nitrous oxide emissions from energy processes are emissions produced by the combustion of fossil fuels and biofuels. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC). Statistical concept and methodology: Nitrous oxide emissions are mainly from fossil fuel combustion, fertilizers, rainforest fires, and animal waste. Nitrous oxide is a powerful greenhouse gas, with an estimated atmospheric lifetime of 114 years, compared with 12 years for methane. The per kilogram global warming potential of nitrous oxide is nearly 310 times that of carbon dioxide within 100 years. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.
Publisher
The World Bank
Origin
Republic of the Union of Myanmar
Records
63
Source
Myanmar | Nitrous oxide emissions in energy sector (% of total)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
0.90687206 1970
1.40708577 1971
1.11244619 1972
0.80286322 1973
1.4644722 1974
1.50616772 1975
1.55874566 1976
1.03490041 1977
0.88258367 1978
1.01755452 1979
0.90102827 1980
1.04086501 1981
1.05133074 1982
0.58335837 1983
1.0120157 1984
1.22061334 1985
1.05404486 1986
0.80558053 1987
1.01265562 1988
1.51379385 1989
4.14788097 1990
4.12926391 1991
4.05286344 1992
3.96893874 1993
3.81110191 1994
3.65853659 1995
3.73906126 1996
3.89817025 1997
3.97505846 1998
3.92156863 1999
3.93873085 2000
4.03587444 2001
4.17598807 2002
4.05405405 2003
3.82807253 2004
3.89784946 2005
3.74919198 2006
3.52286774 2007
3.45679012 2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
Myanmar | Nitrous oxide emissions in energy sector (% of total)
Nitrous oxide emissions from energy processes are emissions produced by the combustion of fossil fuels and biofuels. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC). Statistical concept and methodology: Nitrous oxide emissions are mainly from fossil fuel combustion, fertilizers, rainforest fires, and animal waste. Nitrous oxide is a powerful greenhouse gas, with an estimated atmospheric lifetime of 114 years, compared with 12 years for methane. The per kilogram global warming potential of nitrous oxide is nearly 310 times that of carbon dioxide within 100 years. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.
Publisher
The World Bank
Origin
Republic of the Union of Myanmar
Records
63
Source