North Macedonia | Total greenhouse gas emissions (kt of CO2 equivalent)
Total greenhouse gas emissions in kt of CO2 equivalent are composed of CO2 totals excluding short-cycle biomass burning (such as agricultural waste burning and savanna burning) but including other biomass burning (such as forest fires, post-burn decay, peat fires and decay of drained peatlands), all anthropogenic CH4 sources, N2O sources and F-gases (HFCs, PFCs and SF6). Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: This series excludes Land-use Change & Forestry (LUCF). The world data includes international bunker fuel-related emissions and emissions from territories not part of the United Nations Framework Convention on Climate Change (UNFCCC). Statistical concept and methodology: The GHG totals are expressed in CO2 equivalent using the GWP100 metric of the Second Assessment Report of IPCC and include CO2 (GWP100=1), CH4 (GWP100=21), N2O (GWP100=310) and F-gases (c-C4F8 GWP=8700, C2F6 GWP=9200, C3F8 GWP=7000, C4F10 GWP=7000, C5F12 GWP=7500, C6F14 GWP=7400, C7F16 GWP=7820, CF4 GWP=6500, HFC-125 GWP=2800, HFC-134a GWP=1300, HFC-143a GWP=3800, HFC-152a GWP=140, HFC-227ea GWP=2900, HFC-23 GWP=11700, HFC-236fa GWP=6300, HFC-245fa GWP=858, HFC-32 GWP=650, HFC-365mfc GWP=804, HFC-43-10-mee GWP=1300, SF6 GWP=23900).
Publisher
The World Bank
Origin
Republic of Macedonia
Records
63
Source
North Macedonia | Total greenhouse gas emissions (kt of CO2 equivalent)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
13899.89975 1990
13229.01642 1991
12436.78429 1992
12450.53574 1993
11986.59709 1994
11597.40307 1995
13162.02023 1996
12007.04958 1997
12754.54794 1998
11823.1016 1999
11473.43576 2000
11509.37056 2001
10910.36416 2002
11678.22249 2003
11476.51493 2004
11773.93046 2005
11771.17389 2006
12260.08482 2007
12057.00874 2008
11367.94207 2009
11251.16748 2010
12133.21352 2011
11706.26546 2012
10792.046 2013
10416.16744 2014
10151.01668 2015
10028.79318 2016
10526.33717 2017
10011.07466 2018
10891.85905 2019
9768.859944 2020
2021
2022
North Macedonia | Total greenhouse gas emissions (kt of CO2 equivalent)
Total greenhouse gas emissions in kt of CO2 equivalent are composed of CO2 totals excluding short-cycle biomass burning (such as agricultural waste burning and savanna burning) but including other biomass burning (such as forest fires, post-burn decay, peat fires and decay of drained peatlands), all anthropogenic CH4 sources, N2O sources and F-gases (HFCs, PFCs and SF6). Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: This series excludes Land-use Change & Forestry (LUCF). The world data includes international bunker fuel-related emissions and emissions from territories not part of the United Nations Framework Convention on Climate Change (UNFCCC). Statistical concept and methodology: The GHG totals are expressed in CO2 equivalent using the GWP100 metric of the Second Assessment Report of IPCC and include CO2 (GWP100=1), CH4 (GWP100=21), N2O (GWP100=310) and F-gases (c-C4F8 GWP=8700, C2F6 GWP=9200, C3F8 GWP=7000, C4F10 GWP=7000, C5F12 GWP=7500, C6F14 GWP=7400, C7F16 GWP=7820, CF4 GWP=6500, HFC-125 GWP=2800, HFC-134a GWP=1300, HFC-143a GWP=3800, HFC-152a GWP=140, HFC-227ea GWP=2900, HFC-23 GWP=11700, HFC-236fa GWP=6300, HFC-245fa GWP=858, HFC-32 GWP=650, HFC-365mfc GWP=804, HFC-43-10-mee GWP=1300, SF6 GWP=23900).
Publisher
The World Bank
Origin
Republic of Macedonia
Records
63
Source