Tanzania | Other greenhouse gas emissions, HFC, PFC and SF6 (thousand metric tons of CO2 equivalent)

Other greenhouse gas emissions are by-product emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC). Statistical concept and methodology: Other greenhouse gas emissions are by-product emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride (F-gases (c-C4F8 GWP=8700, C2F6 GWP=9200, C3F8 GWP=7000, C4F10 GWP=7000, C5F12 GWP=7500, C6F14 GWP=7400, C7F16 GWP=7820, CF4 GWP=6500, HFC-125 GWP=2800, HFC-134a GWP=1300, HFC-143a GWP=3800, HFC-152a GWP=140, HFC-227ea GWP=2900, HFC-23 GWP=11700, HFC-236fa GWP=6300, HFC-245fa GWP=858, HFC-32 GWP=650, HFC-365mfc GWP=804, HFC-43-10-mee GWP=1300, SF6 GWP=23900). Derived as residuals from total GHG emissions, CO2 emissions, CH4 emissions, and N2O emissions in kt of CO equivalent. Other greenhouse gases covered under the Kyoto Protocol are hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. Although emissions of these artificial gases are small, they are more powerful greenhouse gases than carbon dioxide, with much higher atmospheric lifetimes and high global warming potential. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.
Publisher
The World Bank
Origin
United Republic of Tanzania
Records
63
Source
Tanzania | Other greenhouse gas emissions, HFC, PFC and SF6 (thousand metric tons of CO2 equivalent)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
49728.89462036 1970
29905.39141235 1971
31699.63658386 1972
33620.73729553 1973
29673.96449402 1974
34467.75058716 1975
30677.28757263 1976
35002.39081238 1977
36855.01560425 1978
47913.27840027 1979
40399.48127136 1980
35678.05721802 1981
40066.07478027 1982
40345.56537781 1983
32230.96368042 1984
32542.83770813 1985
30171.88562012 1986
40639.09149536 1987
29643.74079407 1988
32769.47878967 1989
-126.77001953 1990
-253.44532776 1991
-107.24873352 1992
-200.98982239 1993
-181.03111267 1994
-98.94598389 1995
-262.05154419 1996
-204.29534912 1997
20.65435791 1998
25.63165283 1999
75.26837158 2000
48.95033264 2001
27.91986084 2002
26.03160095 2003
862.50521851 2004
206.27478027 2005
231.44683838 2006
249.80599976 2007
155.15435791 2008
267.08929443 2009
734.60873413 2010
836.90118408 2011
1396.16882324 2012
2164.91375732 2013
1943.8114624 2014
2645.75817871 2015
1758.43963623 2016
2017
2018
2019
2020
2021
2022

Tanzania | Other greenhouse gas emissions, HFC, PFC and SF6 (thousand metric tons of CO2 equivalent)

Other greenhouse gas emissions are by-product emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC). Statistical concept and methodology: Other greenhouse gas emissions are by-product emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride (F-gases (c-C4F8 GWP=8700, C2F6 GWP=9200, C3F8 GWP=7000, C4F10 GWP=7000, C5F12 GWP=7500, C6F14 GWP=7400, C7F16 GWP=7820, CF4 GWP=6500, HFC-125 GWP=2800, HFC-134a GWP=1300, HFC-143a GWP=3800, HFC-152a GWP=140, HFC-227ea GWP=2900, HFC-23 GWP=11700, HFC-236fa GWP=6300, HFC-245fa GWP=858, HFC-32 GWP=650, HFC-365mfc GWP=804, HFC-43-10-mee GWP=1300, SF6 GWP=23900). Derived as residuals from total GHG emissions, CO2 emissions, CH4 emissions, and N2O emissions in kt of CO equivalent. Other greenhouse gases covered under the Kyoto Protocol are hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. Although emissions of these artificial gases are small, they are more powerful greenhouse gases than carbon dioxide, with much higher atmospheric lifetimes and high global warming potential. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.
Publisher
The World Bank
Origin
United Republic of Tanzania
Records
63
Source