Uruguay | Agricultural methane emissions (thousand metric tons of CO2 equivalent)
Agricultural methane emissions are emissions from animals, animal waste, rice production, agricultural waste burning (nonenergy, on-site), and savanna burning. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: This series excludes Land-use Change & Forestry (LUCF). The world data includes international bunker fuel-related emissions and emissions from territories not part of the United Nations Framework Convention on Climate Change (UNFCCC). Statistical concept and methodology: IPCC category 4 = Agriculture. Expressed in CO2 equivalent using the GWP100 metric of the Second Assessment Report of IPCC and include CH4 (GWP100=21). Methane emissions result largely from agricultural activities, industrial production landfills and wastewater treatment, and other sources such as tropical forest and other vegetation fires. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared. A kilogram of methane is 21 times as effective at trapping heat in the earth's atmosphere as a kilogram of carbon dioxide within 100 years. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.
Publisher
The World Bank
Origin
Eastern Republic of Uruguay
Records
63
Source
Uruguay | Agricultural methane emissions (thousand metric tons of CO2 equivalent)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
16698.8475 1990
17493.4475 1991
18416.7675 1992
19055.765 1993
19200.055 1994
19075.8625 1995
19350.845 1996
19080.2675 1997
18619.53 1998
18755.68 1999
18344.9375 2000
18345.8675 2001
19088.53 2002
19588.38 2003
20146.6675 2004
20293.5125 2005
21014.11 2006
20521.3625 2007
20992.725 2008
20569.675 2009
19500.4325 2010
19729.4 2011
19146.225 2012
19255.03 2013
19556.3025 2014
19531.2 2015
19627.3725 2016
19286.31 2017
18857.75 2018
18681.9875 2019
18299.905 2020
2021
2022
Uruguay | Agricultural methane emissions (thousand metric tons of CO2 equivalent)
Agricultural methane emissions are emissions from animals, animal waste, rice production, agricultural waste burning (nonenergy, on-site), and savanna burning. Development relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally. Limitations and exceptions: This series excludes Land-use Change & Forestry (LUCF). The world data includes international bunker fuel-related emissions and emissions from territories not part of the United Nations Framework Convention on Climate Change (UNFCCC). Statistical concept and methodology: IPCC category 4 = Agriculture. Expressed in CO2 equivalent using the GWP100 metric of the Second Assessment Report of IPCC and include CH4 (GWP100=21). Methane emissions result largely from agricultural activities, industrial production landfills and wastewater treatment, and other sources such as tropical forest and other vegetation fires. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared. A kilogram of methane is 21 times as effective at trapping heat in the earth's atmosphere as a kilogram of carbon dioxide within 100 years. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.
Publisher
The World Bank
Origin
Eastern Republic of Uruguay
Records
63
Source