Viet Nam | Land under cereal production (hectares)
Land under cereal production refers to harvested area, although some countries report only sown or cultivated area. Cereals include wheat, rice, maize, barley, oats, rye, millet, sorghum, buckwheat, and mixed grains. Production data on cereals relate to crops harvested for dry grain only. Cereal crops harvested for hay or harvested green for food, feed, or silage and those used for grazing are excluded. Development relevance: The cultivation of cereals varies widely in different countries and depends partly upon the development of the economy. Production depends on the nature of the soil, the amount of rainfall, irrigation, quality od seeds, and the techniques applied to promote growth. In developed countries, cereal crops are universally machine-harvested, typically using a combine harvester, which cuts, threshes, and winnows the grain during a single pass across the field. In many industrialized countries, particularly in the United States and Canada, farmers commonly deliver their newly harvested grain to a grain elevator or a storage facility that consolidates the crops of many farmers. In developing countries, a variety of harvesting methods are used in cereal cultivation, depending on the cost of labor, from small combines to hand tools such as the scythe or cradle. Crop production systems have evolved rapidly over the past century and have resulted in significantly increased crop yields, but have also created undesirable environmental side-effects such as soil degradation and erosion, pollution from chemical fertilizers and agrochemicals and a loss of bio-diversity. Factors such as the green revolution, has led to impressive progress in increasing cereals yields over the last few decades. This progress, however, is not equal across all regions. Continued progress depends on maintaining agricultural research and education. The cultivation of cereals varies widely in different countries and depends partly upon the development of the economy. Production depends on the nature of the soil, the amount of rainfall, irrigation, quality of seeds, and the techniques applied to promote growth. Agriculture is still a major sector in many economies, and agricultural activities provide developing countries with food and revenue. But agricultural activities also can degrade natural resources. Poor farming practices can cause soil erosion and loss of soil fertility. Efforts to increase productivity by using chemical fertilizers, pesticides, and intensive irrigation have environmental costs and health impacts. Salinization of irrigated land diminishes soil fertility. Thus, inappropriate use of inputs for agricultural production has far-reaching effects. There is no single correct mix of inputs to the agricultural land, as it is dependent on local climate, land quality, and economic development; appropriate levels and application rates vary by country and over time and depend on the type of crops, the climate and soils, and the production process used. Limitations and exceptions: The data are collected by the Food and Agriculture Organization of the United Nations (FAO) through annual questionnaires. They are supplemented with information from official secondary data sources. The secondary sources cover official country data from websites of national ministries, national publications and related country data reported by various international organizations. The FAO tries to impose standard definitions and reporting methods, but complete consistency across countries and over time is not possible. Thus, data on agricultural land in different climates may not be comparable. For example, permanent pastures are quite different in nature and intensity in African countries and dry Middle Eastern countries. Data on agricultural land are valuable for conducting studies on a various perspectives concerning agricultural production, food security and for deriving cropping intensity among others uses. Statistical concept and methodology: Cereals production includes wheat, rice, maize, barley, oats, rye, millet, sorghum, buckwheat, and mixed grains. Production data on cereals relate to crops harvested for dry grain only. Cereal crops harvested for hay or harvested green for food, feed, or silage and those used for grazing are excluded. A cereal is a grass cultivated for the edible components of their grain, composed of the endosperm, germ, and bran. Cereal grains are grown in greater quantities and provide more food energy worldwide than any other type of crop; cereal crops therefore can also be called staple crops.
Publisher
The World Bank
Origin
Viet Nam
Records
63
Source
Viet Nam | Land under cereal production (hectares)
1960
5004200 1961
5150880 1962
4769270 1963
5244800 1964
5103700 1965
4948800 1966
5025800 1967
5132800 1968
5172000 1969
4958100 1970
4928200 1971
5135500 1972
5270000 1973
5361920 1974
5123000 1975
5633900 1976
5871600 1977
5855000 1978
5859500 1979
5989800 1980
6036500 1981
6093100 1982
5990000 1983
6061500 1984
6115600 1985
6104000 1986
6008700 1987
6251300 1988
6420600 1989
6474600 1990
6750300 1991
6953400 1992
7055900 1993
7133300 1994
7322400 1995
7619000 1996
7762600 1997
8003178 1998
8347300 1999
8398386 2000
8224081 2001
8322694 2002
8366800 2003
8437800 2004
8383400 2005
8359397 2006
8304947 2007
8842009 2008
8527719 2009
8616898 2010
8777825 2011
8918511 2012
9074053 2013
8996167 2014
8994331 2015
8887979 2016
8809968 2017
8605200 2018
8438272 2019
8163345 2020
8121766 2021
2022
Viet Nam | Land under cereal production (hectares)
Land under cereal production refers to harvested area, although some countries report only sown or cultivated area. Cereals include wheat, rice, maize, barley, oats, rye, millet, sorghum, buckwheat, and mixed grains. Production data on cereals relate to crops harvested for dry grain only. Cereal crops harvested for hay or harvested green for food, feed, or silage and those used for grazing are excluded. Development relevance: The cultivation of cereals varies widely in different countries and depends partly upon the development of the economy. Production depends on the nature of the soil, the amount of rainfall, irrigation, quality od seeds, and the techniques applied to promote growth. In developed countries, cereal crops are universally machine-harvested, typically using a combine harvester, which cuts, threshes, and winnows the grain during a single pass across the field. In many industrialized countries, particularly in the United States and Canada, farmers commonly deliver their newly harvested grain to a grain elevator or a storage facility that consolidates the crops of many farmers. In developing countries, a variety of harvesting methods are used in cereal cultivation, depending on the cost of labor, from small combines to hand tools such as the scythe or cradle. Crop production systems have evolved rapidly over the past century and have resulted in significantly increased crop yields, but have also created undesirable environmental side-effects such as soil degradation and erosion, pollution from chemical fertilizers and agrochemicals and a loss of bio-diversity. Factors such as the green revolution, has led to impressive progress in increasing cereals yields over the last few decades. This progress, however, is not equal across all regions. Continued progress depends on maintaining agricultural research and education. The cultivation of cereals varies widely in different countries and depends partly upon the development of the economy. Production depends on the nature of the soil, the amount of rainfall, irrigation, quality of seeds, and the techniques applied to promote growth. Agriculture is still a major sector in many economies, and agricultural activities provide developing countries with food and revenue. But agricultural activities also can degrade natural resources. Poor farming practices can cause soil erosion and loss of soil fertility. Efforts to increase productivity by using chemical fertilizers, pesticides, and intensive irrigation have environmental costs and health impacts. Salinization of irrigated land diminishes soil fertility. Thus, inappropriate use of inputs for agricultural production has far-reaching effects. There is no single correct mix of inputs to the agricultural land, as it is dependent on local climate, land quality, and economic development; appropriate levels and application rates vary by country and over time and depend on the type of crops, the climate and soils, and the production process used. Limitations and exceptions: The data are collected by the Food and Agriculture Organization of the United Nations (FAO) through annual questionnaires. They are supplemented with information from official secondary data sources. The secondary sources cover official country data from websites of national ministries, national publications and related country data reported by various international organizations. The FAO tries to impose standard definitions and reporting methods, but complete consistency across countries and over time is not possible. Thus, data on agricultural land in different climates may not be comparable. For example, permanent pastures are quite different in nature and intensity in African countries and dry Middle Eastern countries. Data on agricultural land are valuable for conducting studies on a various perspectives concerning agricultural production, food security and for deriving cropping intensity among others uses. Statistical concept and methodology: Cereals production includes wheat, rice, maize, barley, oats, rye, millet, sorghum, buckwheat, and mixed grains. Production data on cereals relate to crops harvested for dry grain only. Cereal crops harvested for hay or harvested green for food, feed, or silage and those used for grazing are excluded. A cereal is a grass cultivated for the edible components of their grain, composed of the endosperm, germ, and bran. Cereal grains are grown in greater quantities and provide more food energy worldwide than any other type of crop; cereal crops therefore can also be called staple crops.
Publisher
The World Bank
Origin
Viet Nam
Records
63
Source